Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LogIntegral






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > LogIntegral[z] > Series representations > Residue representations





http://functions.wolfram.com/06.36.06.0008.02









  


  










Input Form





LogIntegral[z] == -Log[-Log[z]] - (1/2) (Log[1/Log[z]] - Log[Log[z]]) - Residue[Gamma[s]/s/(-Log[z])^s, {s, 0}] - Sum[Residue[(1/((-Log[z])^s s)) Gamma[s], {s, -j}], {j, 1, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["LogIntegral", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", FractionBox["1", RowBox[List["Log", "[", "z", "]"]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["Log", "[", "z", "]"]], "]"]]]], ")"]]]], "-", RowBox[List["Residue", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], ")"]], RowBox[List["-", "s"]]], FractionBox[RowBox[List["Gamma", "[", "s", "]"]], "s"]]], ",", RowBox[List["{", RowBox[List["s", ",", "0"]], "}"]]]], "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], ")"]], RowBox[List["-", "s"]]], "s"], RowBox[List["Gamma", "[", "s", "]"]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["-", "j"]]]], "}"]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> li </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mtext> </mtext> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> <mi> s </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mtext> </mtext> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mi> s </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> LogIntegral </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ln /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <power /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LogIntegral", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", FractionBox["1", RowBox[List["Log", "[", "z", "]"]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["Log", "[", "z", "]"]], "]"]]]], ")"]]]], "-", RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], ")"]], RowBox[List["-", "s"]]], " ", RowBox[List["Gamma", "[", "s", "]"]]]], "s"], ",", RowBox[List["{", RowBox[List["s", ",", "0"]], "}"]]]], "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], ")"]], RowBox[List["-", "s"]]], " ", RowBox[List["Gamma", "[", "s", "]"]]]], "s"], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["-", "j"]]]], "}"]]]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29