|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.36.26.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LogIntegral[E^z] == -ExpIntegralE[1, -z] + (1/2) (Log[z] - Log[1/z]) -
Log[-z] /; Inequality[-Pi, Less, Im[z], LessEqual, Pi]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LogIntegral", "[", SuperscriptBox["\[ExponentialE]", "z"], "]"]], "\[Equal]", "\[IndentingNewLine]", RowBox[List[RowBox[List["-", RowBox[List["ExpIntegralE", "[", RowBox[List["1", ",", RowBox[List["-", "z"]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["Log", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], "-", RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["-", "\[Pi]"]], "<", RowBox[List["Im", "[", "z", "]"]], "\[LessEqual]", "\[Pi]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> li </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox["E", ExpIntegralE] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> - </mo> <mi> π </mi> </mrow> <mo> < </mo> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ≤ </mo> <mi> π </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LogIntegral </ci> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> ExpIntegralE </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ln /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Inequality </ci> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <lt /> <apply> <imaginary /> <ci> z </ci> </apply> <leq /> <pi /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LogIntegral", "[", SuperscriptBox["\[ExponentialE]", "z_"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["ExpIntegralE", "[", RowBox[List["1", ",", RowBox[List["-", "z"]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["Log", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], "-", RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]]]], "/;", RowBox[List[RowBox[List["-", "\[Pi]"]], "<", RowBox[List["Im", "[", "z", "]"]], "\[LessEqual]", "\[Pi]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|