|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/14.03.09.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DiracDelta[x] == Limit[1/(2 Sqrt[Pi \[CurlyEpsilon]])/
E^(x^2/(4 \[CurlyEpsilon])), \[CurlyEpsilon] -> Plus[0]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["DiracDelta", "[", "x", "]"]], "\[Equal]", RowBox[List["Limit", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", "1"]], RowBox[List[" ", RowBox[List["2", " ", SqrtBox[RowBox[List["\[Pi]", " ", "\[CurlyEpsilon]"]]]]]]]], SuperscriptBox["\[ExponentialE]", RowBox[List["-", " ", FractionBox[RowBox[List[" ", SuperscriptBox["x", RowBox[List[" ", "2"]]]]], RowBox[List[" ", RowBox[List["4", " ", "\[CurlyEpsilon]"]]]]]]]]]], ",", RowBox[List["\[CurlyEpsilon]", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> DiracDelta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <munder> <mi> lim </mi> <mrow> <mi> ε </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <mo> + </mo> <mn> 0 </mn> </mrow> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ε </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ε </mi> </mrow> </mfrac> </mrow> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> DiracDelta </ci> <ci> x </ci> </apply> <apply> <limit /> <bvar> <ci> ε </ci> </bvar> <condition> <apply> <tendsto /> <ci> ε </ci> <apply> <plus /> <cn type='integer'> 0 </cn> </apply> </apply> </condition> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <pi /> <ci> ε </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> ε </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["DiracDelta", "[", "x_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List["Limit", "[", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["x", "2"], RowBox[List["4", " ", "\[CurlyEpsilon]"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["\[Pi]", " ", "\[CurlyEpsilon]"]]]]]], ",", RowBox[List["\[CurlyEpsilon]", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|