|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.05.21.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[ChebyshevU[\[Nu], z], \[Nu]] ==
-((z ChebyshevT[\[Nu], z] + (z^2 - 1) ChebyshevU[\[Nu] - 1, z])/
(Sqrt[1 - z^2] ArcCos[z]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["ChebyshevU", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], RowBox[List["\[DifferentialD]", "\[Nu]"]]]]]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["z", " ", RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "1"]], ",", "z"]], "]"]]]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ArcCos", "[", "z", "]"]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msub> <mi> U </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> ν </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <msub> <mi> T </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> U </mi> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> ν </ci> </bvar> <apply> <ci> ChebyshevU </ci> <ci> ν </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <ci> ChebyshevT </ci> <ci> ν </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccos /> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["ChebyshevU", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], RowBox[List["\[DifferentialD]", "\[Nu]_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["z", " ", RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "1"]], ",", "z"]], "]"]]]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ArcCos", "[", "z", "]"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|