Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Fibonacci[nu,z] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/07.06.06.0038.01









  


  










Input Form





Fibonacci[\[Nu], z] \[Proportional] Sin[(Pi \[Nu])/2]^2 + (\[Nu]/2) Cos[(Pi \[Nu])/2]^2 z + ((\[Nu]^2 - 1)/8) Sin[(Pi \[Nu])/2]^2 z^2 + (((\[Nu]^2 - 4) \[Nu])/48) Cos[(Pi \[Nu])/2]^2 z^3 + O[z^4]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"], "+", RowBox[List[FractionBox["\[Nu]", "2"], SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"], "z"]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Nu]", "2"], "-", "1"]], "8"], SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"], SuperscriptBox["z", "2"]]], " ", "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Nu]", "2"], "-", "4"]], ")"]], "\[Nu]", " "]], "48"], SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"], SuperscriptBox["z", "3"]]], "+", RowBox[List["O", "[", SuperscriptBox["z", "4"], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 48 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> Fibonacci </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <power /> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <ci> &#957; </ci> <apply> <power /> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 48 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -4 </cn> </apply> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Nu]", " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"], " ", "z"]], "+", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Nu]", "2"], "-", "1"]], ")"]], " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "48"], " ", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Nu]", "2"], "-", "4"]], ")"]], " ", "\[Nu]"]], ")"]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"], " ", SuperscriptBox["z", "3"]]], "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "4"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02