| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.06.06.0009.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Fibonacci[\[Nu], z] \[Proportional] (1/(E^((I Pi \[Nu])/2) 2)) 
   (\[Nu] (Sin[Pi \[Nu]] - 2 I Cos[Pi \[Nu]]) 
     (1 + ((I (1 - \[Nu]^2))/6) (z - 2 I) + ((-4 + 5 \[Nu]^2 - \[Nu]^4)/120) 
       (z - 2 I)^2 + \[Ellipsis]) + ((I Sin[Pi \[Nu]])/Sqrt[I (z - 2 I)]) 
     (1 + ((I (1 - 4 \[Nu]^2))/8) (z - 2 I) + 
      ((-9 + 40 \[Nu]^2 - 16 \[Nu]^4)/384) (z - 2 I)^2 + \[Ellipsis])) /; 
 (z -> 2 I) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[" ", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]], "2"]]]], "2"], RowBox[List["(", RowBox[List[RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[Nu]", "2"]]], ")"]]]], "6"], RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", "\[ImaginaryI]"]]]], ")"]]]], "+", " ", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["5", " ", SuperscriptBox["\[Nu]", "2"]]], "-", SuperscriptBox["\[Nu]", "4"]]], "120"], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", "\[ImaginaryI]"]]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", "  ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], SqrtBox[RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", "\[ImaginaryI]"]]]], ")"]]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], "8"], RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", "\[ImaginaryI]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "9"]], "+", RowBox[List["40", " ", SuperscriptBox["\[Nu]", "2"]]], "-", RowBox[List["16", " ", SuperscriptBox["\[Nu]", "4"]]]]], "384"], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", "\[ImaginaryI]"]]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "->", RowBox[List["2", "\[ImaginaryI]"]]]], ")"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msub>  <semantics>  <mi> F </mi>  <annotation encoding='Mathematica'> TagBox["F", Fibonacci] </annotation>  </semantics>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ∝ </mo>  <mrow>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ν </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> ν </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mn> 6 </mn>  </mfrac>  <mo> ⁢ </mo>  <mtext>    </mtext>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> ν </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 5 </mn>  <mo> ⁢ </mo>  <msup>  <mi> ν </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 4 </mn>  </mrow>  <mn> 120 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mo> … </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msqrt>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mi> ν </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mn> 8 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 16 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ν </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 40 </mn>  <mo> ⁢ </mo>  <msup>  <mi> ν </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 9 </mn>  </mrow>  <mn> 384 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mo> … </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> -> </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <ci> Proportional </ci>  <apply>  <ci> Fibonacci </ci>  <ci> ν </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <pi />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> ν </ci>  <apply>  <plus />  <apply>  <sin />  <apply>  <times />  <pi />  <ci> ν </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <apply>  <cos />  <apply>  <times />  <pi />  <ci> ν </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 6 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 5 </cn>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -4 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 120 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <ci> … </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <imaginaryi />  <apply>  <sin />  <apply>  <times />  <pi />  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -16 </cn>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 40 </cn>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -9 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 384 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <ci> … </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Rule </ci>  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[Nu]", "2"]]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "120"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["5", " ", SuperscriptBox["\[Nu]", "2"]]], "-", SuperscriptBox["\[Nu]", "4"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "384"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9"]], "+", RowBox[List["40", " ", SuperscriptBox["\[Nu]", "2"]]], "-", RowBox[List["16", " ", SuperscriptBox["\[Nu]", "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]], SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]]]]]]]], ")"]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["2", " ", "\[ImaginaryI]"]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |