Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Fibonacci[nu,z] > Series representations > Generalized power series > Expansions at z==infinity





http://functions.wolfram.com/07.06.06.0041.01









  


  










Input Form





Fibonacci[\[Nu], z] \[Proportional] ((1/z) (z Sin[(Pi \[Nu])/2]^2 - Sqrt[z^2] Cos[(Pi \[Nu])/2]^2) (1 - (2 + \[Nu])/z^2 + (12 + 7 \[Nu] + \[Nu]^2)/(2 z^4) - \[Ellipsis]))/ (z^2)^((\[Nu] + 1)/2) + (1/z) (z^2)^((\[Nu] - 1)/2) (z Sin[(Pi \[Nu])/2]^2 + Sqrt[z^2] Cos[(Pi \[Nu])/2]^2) (1 - (2 - \[Nu])/z^2 + (12 - 7 \[Nu] + \[Nu]^2)/(2 z^4) + O[1/z^6]) /; !Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox["1", "z"], SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], RowBox[List["-", FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"]]], "-", RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"]]]]], ")"]], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", "+", "\[Nu]"]], SuperscriptBox["z", "2"]], "+", FractionBox[RowBox[List["12", "+", RowBox[List["7", " ", "\[Nu]"]], "+", SuperscriptBox["\[Nu]", "2"]]], RowBox[List["2", " ", SuperscriptBox["z", "4"]]]], "-", "\[Ellipsis]"]], ")"]]]], " ", "+", RowBox[List[FractionBox["1", "z"], SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], FractionBox[RowBox[List["\[Nu]", "-", "1"]], "2"]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"]]], "+", RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"]]]]], ")"]], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", "-", "\[Nu]"]], SuperscriptBox["z", "2"]], "+", FractionBox[RowBox[List["12", "-", RowBox[List["7", " ", "\[Nu]"]], "+", SuperscriptBox["\[Nu]", "2"]]], RowBox[List["2", " ", SuperscriptBox["z", "4"]]]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "6"]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 12 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 12 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Fibonacci </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 12 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 12 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> &#957; </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"]]], "-", RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", "+", "\[Nu]"]], SuperscriptBox["z", "2"]], "+", FractionBox[RowBox[List["12", "+", RowBox[List["7", " ", "\[Nu]"]], "+", SuperscriptBox["\[Nu]", "2"]]], RowBox[List["2", " ", SuperscriptBox["z", "4"]]]], "-", "\[Ellipsis]"]], ")"]]]], "z"], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], FractionBox[RowBox[List["\[Nu]", "-", "1"]], "2"]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"]]], "+", RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", "-", "\[Nu]"]], SuperscriptBox["z", "2"]], "+", FractionBox[RowBox[List["12", "-", RowBox[List["7", " ", "\[Nu]"]], "+", SuperscriptBox["\[Nu]", "2"]]], RowBox[List["2", " ", SuperscriptBox["z", "4"]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "6"]], "]"]]]], ")"]]]], "z"]]], "/;", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02