Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Fibonacci[nu,z] > Series representations > Generalized power series > Expansions at z==infinity





http://functions.wolfram.com/07.06.06.0022.01









  


  










Input Form





Fibonacci[n, z] == ((2^(1 - n) Sqrt[Pi] z^(n - 1))/Gamma[n/2]) Sum[((n - k - 1)!/(k! Gamma[(n + 1)/2 - k])) Pochhammer[1 - n/2, k] (-(4/z^2))^k, {k, 0, n - 1}] /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "n"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["n", "-", "1"]]], " "]], RowBox[List["Gamma", "[", FractionBox["n", "2"], "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k", "-", "1"]], ")"]], "!"]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["n", "+", "1"]], "2"], "-", "k"]], "]"]]]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", FractionBox["n", "2"]]], ",", "k"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["4", SuperscriptBox["z", "2"]]]], ")"]], "k"]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[&quot;n&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 4 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Fibonacci </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "n"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["n", "-", "1"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k", "-", "1"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", FractionBox["n", "2"]]], ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["4", SuperscriptBox["z", "2"]]]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["n", "+", "1"]], "2"], "-", "k"]], "]"]]]]]]]]], RowBox[List["Gamma", "[", FractionBox["n", "2"], "]"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29