Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Fibonacci[nu,z] > Representations through more general functions > Through other functions > Involving some hypergeometric-type functions





http://functions.wolfram.com/07.06.26.0018.01









  


  










Input Form





Fibonacci[\[Nu], z] == (1/(E^((I Pi \[Nu])/2) (2 (4 + z^2)^(1/4)))) (((2 (2 I Cos[Pi \[Nu]] - Sin[Pi \[Nu]]))/Sqrt[Pi]) LegendreQ[\[Nu] - 1/2, 1/2, 2, -((I z)/2)] + I Sqrt[Pi] Sin[Pi \[Nu]] LegendreP[\[Nu] - 1/2, 1/2, 2, -((I z)/2)]) /; !Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "-", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], ")"]]]], SqrtBox["\[Pi]"]], RowBox[List["LegendreQ", "[", RowBox[List[RowBox[List["\[Nu]", "-", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]]]], "]"]]]], " ", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["\[Nu]", "-", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 4 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msubsup> <mo> ( </mo> <semantics> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;z&quot;]], &quot;2&quot;]]], HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msubsup> <mo> ( </mo> <semantics> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;z&quot;]], &quot;2&quot;]]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Fibonacci </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreQ </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> &#957; </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Fibonacci", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "-", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], ")"]]]], ")"]], " ", RowBox[List["LegendreQ", "[", RowBox[List[RowBox[List["\[Nu]", "-", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", "2", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]]]]]], "]"]]]], SqrtBox["\[Pi]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["\[Nu]", "-", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", "2", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]]]]]], "]"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]]], "/;", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29