Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Hypergeometric Functions > GegenbauerC[nu,z] > Series representations > Generalized power series > Expansions at z==infinity > For the function itself > Expansions in 1/(1-z)





http://functions.wolfram.com/07.13.06.0022.02









  


  










Input Form





GegenbauerC[\[Nu], z] \[Proportional] (2^\[Nu]/\[Nu]) (z - 1)^\[Nu] (1 - \[Nu]/(1 - z) - (\[Nu] (3 - 2 \[Nu]))/(4 (1 - z)^2) - \[Ellipsis]) + ((1/(2^\[Nu] \[Nu])) (1 + \[Nu]/(1 - z) + (\[Nu] (3 + 2 \[Nu]))/ (4 (1 - z)^2) + \[Ellipsis]))/(z - 1)^\[Nu] /; (Abs[z] -> Infinity) && !Element[2 \[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[SuperscriptBox["2", "\[Nu]"], "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "\[Nu]"], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox["\[Nu]", RowBox[List["1", "-", "z", " "]]], "-", FractionBox[RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], ")"]]]], RowBox[List[" ", RowBox[List["4", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "2"]]]]]], "-", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", " "]], RowBox[List["1", "-", "z", " "]]], "+", FractionBox[RowBox[List[" ", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", "\[Nu]"]]]], ")"]]]]]], RowBox[List["4", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List["2", "\[Nu]"]], ",", "Integers"]], "]"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mi> &#957; </mi> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> &#957; </mi> <mtext> </mtext> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> <mtext> </mtext> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mi> &#957; </mi> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> <mtext> </mtext> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mtext> </mtext> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </mfrac> <mo> - </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> GegenbauerC </ci> <ci> &#957; </ci> <cn type='integer'> 0 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> &#957; </ci> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "\[Nu]"], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox["\[Nu]", RowBox[List["1", "-", "z"]]], "-", FractionBox[RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "2"]]]], "-", "\[Ellipsis]"]], ")"]]]], "\[Nu]"], "+", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox["\[Nu]", RowBox[List["1", "-", "z"]]], "+", FractionBox[RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "\[Nu]"]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["!", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29