|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.13.13.0020.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wronskian[h[z] GegenbauerC[\[Nu], g[z]], h[z] Sqrt[1 - g[z]^2]
ChebyshevU[\[Nu] - 1, g[z]], z] ==
-((2 h[z]^2 Derivative[1][g][z])/Sqrt[1 - g[z]^2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[RowBox[List["h", "[", "z", "]"]], RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], ",", RowBox[List[RowBox[List["h", "[", "z", "]"]], SqrtBox[RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]], RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "1"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> W </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> h </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <mi> C </mi> <mi> ν </mi> <mrow> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> h </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> U </mi> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> h </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> W </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <ci> h </ci> <ci> z </ci> </apply> <apply> <ci> GegenbauerC </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> h </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> h </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[RowBox[List["h", "[", "z_", "]"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", RowBox[List["g", "[", "z_", "]"]]]], "]"]]]], ",", RowBox[List[RowBox[List["h", "[", "z_", "]"]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]_", "-", "1"]], ",", RowBox[List["g", "[", "z_", "]"]]]], "]"]]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["h", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|