
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.13.20.0010.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
D[GegenbauerC[\[Nu], z], {\[Nu], \[Alpha]}] ==
2 FDPowerConstant[\[Nu], -1, \[Alpha]] \[Nu]^(-\[Alpha] - 1) -
2^(\[Alpha] - 1) \[Nu]^(1 - \[Alpha]) Sqrt[Pi] ArcCos[z]^2
HypergeometricPFQRegularized[{1, 1}, {2, 1 - \[Alpha]/2,
(3 - \[Alpha])/2}, (-(1/4)) \[Nu]^2 ArcCos[z]^2]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "\[Alpha]"]], "}"]]], RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["2", RowBox[List["FDPowerConstant", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["\[Nu]", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List["\[Alpha]", "-", "1"]]], " ", SuperscriptBox["\[Nu]", RowBox[List["1", "-", "\[Alpha]"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["ArcCos", "[", "z", "]"]], "2"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "2"]]], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "2"]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", SuperscriptBox["\[Nu]", "2"], " ", SuperscriptBox[RowBox[List["ArcCos", "[", "z", "]"]], "2"]]]]], "]"]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <mrow> <msubsup> <mi> C </mi> <mi> ν </mi> <mrow> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> ν </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <msubsup> <mi> ℱ𝒞 </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> α </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> α </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["2", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", FractionBox["\[Alpha]", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "2"], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", SuperscriptBox["\[Nu]", "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["cos", RowBox[List["-", "1"]]], "(", "z", ")"]], "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> ν </ci> <degree> <ci> α </ci> </degree> </bvar> <apply> <ci> GegenbauerC </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ℱ𝒞 </ci> <ci> exp </ci> </apply> <ci> α </ci> </apply> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> ν </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> ν </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <arccos /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> <list> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <arccos /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["2", " ", RowBox[List["FDPowerConstant", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["\[Nu]", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List["\[Alpha]", "-", "1"]]], " ", SuperscriptBox["\[Nu]", RowBox[List["1", "-", "\[Alpha]"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["ArcCos", "[", "z", "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "2"]]], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "2"]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", SuperscriptBox["\[Nu]", "2"], " ", SuperscriptBox[RowBox[List["ArcCos", "[", "z", "]"]], "2"]]]]], "]"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|