|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.13.20.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[GegenbauerC[\[Nu], z], {z, \[Alpha]}] ==
(((2 Sqrt[Pi])/\[Nu]) HypergeometricPFQRegularized[
{{-\[Nu], \[Nu]}, {1}, {}}, {{1/2}, {1 - \[Alpha]}, {}}, -(z/2), 1/2])/
z^\[Alpha]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["2", SqrtBox["\[Pi]"]]], "\[Nu]"], SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "\[Nu]"]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", "\[Alpha]"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["-", FractionBox["z", "2"]]], ",", FractionBox["1", "2"]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <mrow> <msubsup> <mi> C </mi> <mi> ν </mi> <mrow> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> </mrow> <mi> ν </mi> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mi> ν </mi> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> <mo> ; </mo> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> ∂ </ms> <ms> α </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> C </ms> <ms> ν </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <ms> 0 </ms> <ms> ) </ms> </list> </apply> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ∂ </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> α </ms> </apply> </list> </apply> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> SqrtBox </ci> <ms> π </ms> </apply> </list> </apply> <ms> ν </ms> </apply> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> α </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> 1 </ms> <ms> 0 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 1 </ms> <ms> 0 </ms> </list> </apply> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> ν </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> ν </ms> <ms> ; </ms> <ms> 1 </ms> <ms> ; </ms> <ms> ; </ms> </list> </apply> </list> </apply> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <ms> ; </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> α </ms> </list> </apply> <ms> ; </ms> <ms> ; </ms> </list> </apply> </list> </list> </apply> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <ms> ] </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SqrtBox["\[Pi]"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "\[Nu]"]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", "\[Alpha]"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["-", FractionBox["z", "2"]]], ",", FractionBox["1", "2"]]], "]"]]]], "\[Nu]"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|