Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Hypergeometric Functions > GegenbauerC[nu,z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving power function





http://functions.wolfram.com/07.13.21.0002.01









  


  










Input Form





Integrate[z^(\[Alpha] - 1) GegenbauerC[\[Nu], z], z] == (1/(2^\[Alpha] \[Nu])) z^(\[Alpha] - 1) (ChebyshevT[\[Alpha] - 1, z] + I Sqrt[1 - z^2] ChebyshevU[\[Alpha] - 2, z]) (z (z + I Sqrt[1 - z^2]))^(1 - \[Alpha]) ((1/(\[Alpha] - \[Nu])) ((ChebyshevT[\[Nu] - \[Alpha], z] + I Sqrt[1 - z^2] ChebyshevU[\[Nu] - \[Alpha] - 1, z]) Hypergeometric2F1[(\[Nu] - \[Alpha])/2, 1 - \[Alpha], 1 + (\[Nu] - \[Alpha])/2, 1 - 2 z^2 - 2 I z Sqrt[1 - z^2]]) + (1/(2 + \[Nu] - \[Alpha])) ((ChebyshevT[2 + \[Nu] - \[Alpha], z] + I Sqrt[1 - z^2] ChebyshevU[1 + \[Nu] - \[Alpha], z]) Hypergeometric2F1[1 + (\[Nu] - \[Alpha])/2, 1 - \[Alpha], 2 + (\[Nu] - \[Alpha])/2, 1 - 2 z^2 - 2 I z Sqrt[1 - z^2]]) + (1/(\[Nu] + \[Alpha])) ((ChebyshevT[\[Nu] + \[Alpha], z] - I Sqrt[1 - z^2] ChebyshevU[\[Nu] + \[Alpha] - 1, z]) Hypergeometric2F1[-((\[Nu] + \[Alpha])/2), 1 - \[Alpha], 1 - (\[Nu] + \[Alpha])/2, 1 - 2 z^2 - 2 I z Sqrt[1 - z^2]]) - (1/(\[Nu] + \[Alpha] - 2)) ((ChebyshevT[2 - \[Nu] - \[Alpha], z] + I Sqrt[1 - z^2] ChebyshevU[1 - \[Nu] - \[Alpha], z]) Hypergeometric2F1[1 - (\[Nu] + \[Alpha])/2, 1 - \[Alpha], 2 - (\[Nu] + \[Alpha])/2, 1 - 2 z^2 - 2 I z Sqrt[1 - z^2]]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["2", RowBox[List["-", "\[Alpha]"]]], "\[Nu]"], " ", SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Alpha]", "-", "1"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Alpha]", "-", "2"]], ",", "z"]], "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]], ")"]]]], ")"]], RowBox[List["1", "-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["\[Alpha]", "-", "\[Nu]"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "\[Alpha]", "-", "1"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], " ", ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2", "+", "\[Nu]", "-", "\[Alpha]"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["2", "+", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], " ", ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["2", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["\[Nu]", "+", "\[Alpha]"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Nu]", "+", "\[Alpha]"]], ",", "z"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "+", "\[Alpha]", "-", "1"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["\[Nu]", "+", "\[Alpha]", "-", "2"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["2", "-", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> z </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mi> &#957; </mi> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msub> <mi> U </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#945; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msub> <mi> U </mi> <mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, SqrtBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]], &quot; &quot;, &quot;z&quot;]], &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#945; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mrow> <mi> &#945; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msub> <mi> U </mi> <mrow> <mi> &#945; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#945; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#945; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;\[Alpha]&quot;, &quot;+&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[RowBox[List[&quot;\[Alpha]&quot;, &quot;+&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, SqrtBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]], &quot; &quot;, &quot;z&quot;]], &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msub> <mi> U </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;2&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, SqrtBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]], &quot; &quot;, &quot;z&quot;]], &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#945; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#945; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msub> <mi> U </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#945; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#945; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[RowBox[List[&quot;\[Alpha]&quot;, &quot;+&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, FractionBox[RowBox[List[&quot;\[Alpha]&quot;, &quot;+&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, SqrtBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]], &quot; &quot;, &quot;z&quot;]], &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> GegenbauerC </ci> <ci> &#957; </ci> <cn type='integer'> 0 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> &#945; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> &#945; </ci> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <ci> &#945; </ci> <ci> &#957; </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <ci> &#945; </ci> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> &#945; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> &#945; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <ci> &#957; </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <ci> &#957; </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> &#945; </ci> <ci> &#957; </ci> <cn type='integer'> -2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> &#945; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> &#945; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Alpha]", "-", "1"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Alpha]", "-", "2"]], ",", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]], ")"]]]], ")"]], RowBox[List["1", "-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "\[Alpha]", "-", "1"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], RowBox[List["\[Alpha]", "-", "\[Nu]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["2", "+", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["2", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], RowBox[List["2", "+", "\[Nu]", "-", "\[Alpha]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Nu]", "+", "\[Alpha]"]], ",", "z"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "+", "\[Alpha]", "-", "1"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[Nu]", "+", "\[Alpha]"]], ")"]]]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], RowBox[List["\[Nu]", "+", "\[Alpha]"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["2", "-", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], RowBox[List["\[Nu]", "+", "\[Alpha]", "-", "2"]]]]], ")"]]]], "\[Nu]"]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29