  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.13.21.0006.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Integrate[(GegenbauerC[m, t] GegenbauerC[n, t])/Sqrt[1 - t^2], {t, -1, 1}] == 
  ((2 Pi)/n^2) KroneckerDelta[m, n] /; Element[m, Integers] && m > 0 && 
  Element[n, Integers] && n > 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "1"]], "1"], RowBox[List[FractionBox[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["m", ",", "t"]], "]"]], RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "t"]], "]"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["t", "2"]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["2", "\[Pi]"]], SuperscriptBox["n", "2"]], RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", "n"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 1 </mn>  </msubsup>  <mrow>  <mfrac>  <mrow>  <mrow>  <msubsup>  <mi> C </mi>  <mi> m </mi>  <mrow>  <mo> ( </mo>  <mn> 0 </mn>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> C </mi>  <mi> n </mi>  <mrow>  <mo> ( </mo>  <mn> 0 </mn>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> t </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> t </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <msup>  <mi> n </mi>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  </msub>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> m </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> t </ci>  </bvar>  <lowlimit>  <cn type='integer'> -1 </cn>  </lowlimit>  <uplimit>  <cn type='integer'> 1 </cn>  </uplimit>  <apply>  <times />  <apply>  <ci> GegenbauerC </ci>  <ci> m </ci>  <cn type='integer'> 0 </cn>  <ci> z </ci>  </apply>  <apply>  <ci> GegenbauerC </ci>  <ci> n </ci>  <cn type='integer'> 0 </cn>  <ci> z </ci>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> t </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  <apply>  <power />  <apply>  <power />  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> KroneckerDelta </ci>  <ci> m </ci>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> m </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "1"]], "1"], RowBox[List[FractionBox[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["m_", ",", "t_"]], "]"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["n_", ",", "t_"]], "]"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["t_", "2"]]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", "n"]], "]"]]]], SuperscriptBox["n", "2"]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |