| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.18.03.0022.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric0F1Regularized[1/3, z] == 
 (1/6) (-3 3^(1/3) AiryAiPrime[3^(2/3) z^(1/3)] + 
   3^(5/6) AiryBiPrime[3^(2/3) z^(1/3)]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[FractionBox["1", "3"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 0 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo>   </mo>  <mo> ; </mo>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["1", "3"], Hypergeometric0F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], ";", TagBox["z", Hypergeometric0F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1Regularized] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 6 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mn> 3 </mn>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 6 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> Bi </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mrow>  <msup>  <mn> 3 </mn>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mroot>  <mn> 3 </mn>  <mn> 3 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> Ai </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mrow>  <msup>  <mn> 3 </mn>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> Hypergeometric0F1Regularized </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 6 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 5 <sep /> 6 </cn>  </apply>  <apply>  <ci> AiryBiPrime </ci>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <ci> AiryAiPrime </ci>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[FractionBox["1", "3"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQRegularized[{a},{b},z] |  | HypergeometricPFQRegularized[{a1,a2},{b1},z] |  | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |