|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.18.20.0006.02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[n, 0][Hypergeometric0F1Regularized][b, z] ==
Sum[(1/k!) D[1/Gamma[b + k], {b, n}] z^k, {k, 0, Infinity}] /;
Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["n", ",", "0"]], "]"]], "[", "Hypergeometric0F1Regularized", "]"]], "[", RowBox[List["b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["k", "!"]]], RowBox[List["D", "[", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["b", "+", "k"]], "]"]]], ",", RowBox[List["{", RowBox[List["b", ",", "n"]], "}"]]]], "]"]], SuperscriptBox["z", "k"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mn> 0 </mn> </msub> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mo>   </mo> <annotation encoding='Mathematica'> TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> b </mi> <annotation encoding='Mathematica'> TagBox[TagBox[TagBox["b", Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", Hypergeometric0F1, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <mfrac> <mn> 1 </mn> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> b </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <msub> <mn> 0 </mn> </msub> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mo>   </mo> <annotation encoding='Mathematica'> TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> b </mi> <annotation encoding='Mathematica'> TagBox[TagBox[TagBox["b", Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", Hypergeometric0F1, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <mfrac> <mn> 1 </mn> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> b </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Hypergeometric0F1Regularized", TagBox[RowBox[List["(", RowBox[List["n", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["b", ",", "n"]], "}"]]]]], FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["b", "+", "k"]], "]"]]]]], " ", SuperscriptBox["z", "k"]]], RowBox[List["k", "!"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{a},{b},z] | HypergeometricPFQRegularized[{a1,a2},{b1},z] | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] | |
|
|
|