|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.18.26.0102.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AiryAi[z] Hypergeometric0F1Regularized[b, z^3/9] ==
(2^(-(7/3) + b)/(3^(1/6) Pi^(3/2)))
MeijerG[{{(1/6) (4 - 3 b), (1/6) (7 - 3 b)}, {}},
{{0, 1/3}, {1 - b, 4/3 - b}}, (4 z^3)/9] /;
Inequality[-(Pi/3), Less, Arg[z], LessEqual, Pi/3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["AiryAi", "[", "z", "]"]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List["b", ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["7", "3"]]], "+", "b"]]], RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["3", " ", "b"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["3", " ", "b"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", "b"]], ",", RowBox[List[FractionBox["4", "3"], "-", "b"]]]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "3"]]], "9"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["-", FractionBox["Pi", "3"]]], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", FractionBox["Pi", "3"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 9 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox[OverscriptBox["F", "~"], "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["b", Hypergeometric0F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox["z", "3"], "9"], Hypergeometric0F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> </mrow> <mo>  </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 3 </mn> </mfrac> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 9 </mn> </mfrac> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mi> b </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "4"]], RowBox[List["2", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "3"]]], "9"], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["3", " ", "b"]]]], ")"]]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["3", " ", "b"]]]], ")"]]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "3"], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["4", "3"], "-", "b"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> π </mi> <mn> 3 </mn> </mfrac> </mrow> <mo> < </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ≤ </mo> <mfrac> <mi> π </mi> <mn> 3 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <ci> AiryAi </ci> <ci> z </ci> </apply> <apply> <ci> Hypergeometric0F1Regularized </ci> <ci> b </ci> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <plus /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> </list> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Inequality </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <lt /> <apply> <arg /> <ci> z </ci> </apply> <leq /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["AiryAi", "[", "z_", "]"]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List["b_", ",", FractionBox[SuperscriptBox["z_", "3"], "9"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["7", "3"]]], "+", "b"]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["3", " ", "b"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["3", " ", "b"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", "b"]], ",", RowBox[List[FractionBox["4", "3"], "-", "b"]]]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "3"]]], "9"]]], "]"]]]], RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]], "/;", RowBox[List[RowBox[List["-", FractionBox["\[Pi]", "3"]]], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", FractionBox["\[Pi]", "3"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{a},{b},z] | HypergeometricPFQRegularized[{a1,a2},{b1},z] | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] | |
|
|
|