Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric0F1Regularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric0F1Regularized[b,z] > Representations through more general functions > Through Meijer G > Classical cases involving Bi





http://functions.wolfram.com/07.18.26.0104.01









  


  










Input Form





AiryBi[z] Hypergeometric0F1Regularized[b, z^3/9] == ((2^(-(1/3) + b) Sqrt[Pi])/3^(1/6)) MeijerG[{{(1/6) (4 - 3 b), (1/6) (7 - 3 b)}, {1/6, 2/3}}, {{0, 1/3}, {1/6, 2/3, 1 - b, 4/3 - b}}, (4 z^3)/9] /; Inequality[-(Pi/3), Less, Arg[z], LessEqual, Pi/3]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["AiryBi", "[", "z", "]"]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List["b", ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], "+", "b"]]], " ", SqrtBox["\[Pi]"]]], SuperscriptBox["3", RowBox[List["1", "/", "6"]]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["3", " ", "b"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["3", " ", "b"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", FractionBox["2", "3"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", FractionBox["2", "3"], ",", RowBox[List["1", "-", "b"]], ",", RowBox[List[FractionBox["4", "3"], "-", "b"]]]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "3"]]], "9"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["-", FractionBox["Pi", "3"]]], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", FractionBox["Pi", "3"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 9 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;0&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;b&quot;, Hypergeometric0F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;3&quot;], &quot;9&quot;], Hypergeometric0F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 6 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 9 </mn> </mfrac> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mi> b </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;4&quot;, &quot;,&quot;, &quot;6&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[FractionBox[RowBox[List[&quot;4&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;3&quot;]]], &quot;9&quot;], MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;6&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;4&quot;, &quot;-&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;b&quot;]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;6&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;7&quot;, &quot;-&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;b&quot;]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;2&quot;, &quot;3&quot;], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;3&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;2&quot;, &quot;3&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;b&quot;]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;4&quot;, &quot;3&quot;], &quot;-&quot;, &quot;b&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#960; </mi> <mn> 3 </mn> </mfrac> </mrow> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mfrac> <mi> &#960; </mi> <mn> 3 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <ci> AiryBi </ci> <ci> z </ci> </apply> <apply> <ci> Hypergeometric0F1Regularized </ci> <ci> b </ci> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <plus /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 6 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </list> <list> <cn type='rational'> 1 <sep /> 6 </cn> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> </list> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Inequality </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <lt /> <apply> <arg /> <ci> z </ci> </apply> <leq /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["AiryBi", "[", "z_", "]"]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List["b_", ",", FractionBox[SuperscriptBox["z_", "3"], "9"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], "+", "b"]]], " ", SqrtBox["\[Pi]"]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["3", " ", "b"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["3", " ", "b"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", FractionBox["2", "3"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", FractionBox["2", "3"], ",", RowBox[List["1", "-", "b"]], ",", RowBox[List[FractionBox["4", "3"], "-", "b"]]]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "3"]]], "9"]]], "]"]]]], SuperscriptBox["3", RowBox[List["1", "/", "6"]]]], "/;", RowBox[List[RowBox[List["-", FractionBox["\[Pi]", "3"]]], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", FractionBox["\[Pi]", "3"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02