Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric1F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric1F1[a,b,z] > Specific values > Specialized values > For fixed a,z





http://functions.wolfram.com/07.20.03.0010.01









  


  










Input Form





Hypergeometric1F1[a, 1/2, z] - ((2 Sqrt[z] Gamma[a + 1/2])/Gamma[a]) Hypergeometric1F1[a + 1/2, 3/2, z] == (2^(2 a)/Sqrt[Pi]) Gamma[a + 1/2] HermiteH[-2 a, Sqrt[z]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric1F1", "[", RowBox[List["a", ",", FractionBox["1", "2"], ",", "z"]], "]"]], "-", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox["z"], RowBox[List["Gamma", "[", RowBox[List["a", "+", FractionBox["1", "2"]]], "]"]]]], RowBox[List["Gamma", "[", "a", "]"]]], RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List["a", "+", FractionBox["1", "2"]]], ",", FractionBox["3", "2"], ",", "z"]], "]"]]]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["2", RowBox[List["2", " ", "a"]]], SqrtBox["\[Pi]"]], RowBox[List["Gamma", "[", RowBox[List["a", "+", FractionBox["1", "2"]]], "]"]], RowBox[List["HermiteH", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], ",", SqrtBox["z"]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;a&quot;, Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric1F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric1F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </msup> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> H </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <ci> Hypergeometric1F1 </ci> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Hypergeometric1F1 </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> HermiteH </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["Hypergeometric1F1", "[", RowBox[List["a_", ",", FractionBox["1", "2"], ",", "z_"]], "]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SqrtBox["z_"], " ", RowBox[List["Gamma", "[", RowBox[List["a_", "+", FractionBox["1", "2"]]], "]"]]]], ")"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List["a_", "+", FractionBox["1", "2"]]], ",", FractionBox["3", "2"], ",", "z_"]], "]"]]]], RowBox[List["Gamma", "[", "a_", "]"]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "a"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", FractionBox["1", "2"]]], "]"]], " ", RowBox[List["HermiteH", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], ",", SqrtBox["z"]]], "]"]]]], SqrtBox["\[Pi]"]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29