|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.20.03.0130.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric1F1[n, 1/2 + m, z] == ((1 + 2 m - 2 n)/(2 (-1 + n)!))
Pochhammer[3/2 + m - n, -1 + n] (E^z Sqrt[Pi] z^(-(1/2) - m + n)
Erf[Sqrt[z]] Sum[(Binomial[-1 + n, p] Pochhammer[1/2, m - n + p])/
(-z)^p, {p, 0, -1 + n}] -
2 Sum[(((-1)^p Binomial[-1 + n, p])/(1 + 2 m - 2 n + 2 p))
Sum[Pochhammer[-(1/2) - m + n - p, k]/(-z)^k, {k, 1, m - n + p}],
{p, 0, -1 + n}]) /; Element[n, Integers] && n > 0 &&
Element[m, Integers] && m >= n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric1F1", "[", RowBox[List["n", ",", RowBox[List[FractionBox["1", "2"], "+", "m"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "m"]], "-", RowBox[List["2", " ", "n"]]]], ")"]], " "]], RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "!"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "m", "-", "n"]], ",", RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "m", "+", "n"]]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "p"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", "p"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["m", "-", "n", "+", "p"]]]], "]"]]]]]]]], "-", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", "p"]], "]"]], " "]], RowBox[List["1", "+", RowBox[List["2", " ", "m"]], "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "p"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["m", "-", "n", "+", "p"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "k"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "m", "+", "n", "-", "p"]], ",", "k"]], "]"]]]]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "n"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> m </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["n", Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["m", "+", FractionBox["1", "2"]]], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric1F1] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["m", "-", "n", "+", FractionBox["3", "2"]]], ")"]], RowBox[List["n", "-", "1"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> p </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox["p", Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mi> p </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], RowBox[List["m", "-", "n", "+", "p"]]], Pochhammer] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> p </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> p </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox["p", Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mi> p </mi> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", "n", "-", "p", "-", FractionBox["1", "2"]]], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ≥ </mo> <mi> n </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Hypergeometric1F1 </ci> <ci> n </ci> <apply> <plus /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> p </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> p </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> p </ci> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> m </ci> <integers /> </apply> <apply> <geq /> <ci> m </ci> <ci> n </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric1F1", "[", RowBox[List["n_", ",", RowBox[List[FractionBox["1", "2"], "+", "m_"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "m"]], "-", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "m", "-", "n"]], ",", RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "m", "+", "n"]]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "p"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", "p"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["m", "-", "n", "+", "p"]]]], "]"]]]]]]]], "-", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", "p"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["m", "-", "n", "+", "p"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "k"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "m", "+", "n", "-", "p"]], ",", "k"]], "]"]]]]]]]], RowBox[List["1", "+", RowBox[List["2", " ", "m"]], "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "p"]]]]]]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "n"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|