  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.20.03.0144.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Hypergeometric1F1[1/2 - n, 1/2, z] == 
  (Sqrt[Pi]/(2 Sqrt[z])) (LaguerreL[-1 + n, -(1/2), z] + 
     2 n LaguerreL[n, -(3/2), z]) Erfi[Sqrt[z]] + 
   (E^z/2) Sum[(1/(p + 1)) LaguerreL[-2 + n - p, 1/2 + p, z] 
      LaguerreL[p, -(1/2) - p, -z], {p, 0, -2 + n}] + 
   n E^z Sum[(1/(p + 1)) LaguerreL[n - p - 1, -(1/2) + p, z] 
      LaguerreL[p, -(1/2) - p, -z], {p, 0, n - 1}] /; 
 Element[n, Integers] && n > 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "n"]], ",", FractionBox["1", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[SqrtBox["\[Pi]"], RowBox[List["2", SqrtBox["z"]]]], RowBox[List["(", RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", "z"]], "]"]], "+", RowBox[List["2", "n", " ", RowBox[List["LaguerreL", "[", RowBox[List["n", ",", RowBox[List["-", FractionBox["3", "2"]]], ",", "z"]], "]"]]]]]], ")"]], RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " "]], "2"], "  ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", "n"]]], RowBox[List[FractionBox["1", RowBox[List["p", "+", "1"]]], RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", "n", "-", "p"]], ",", RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", "z"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]]]], "+", RowBox[List["n", " ", SuperscriptBox["\[ExponentialE]", "z"], "  ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox["1", RowBox[List["p", "+", "1"]]], RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "-", "p", "-", "1"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "p"]], ",", "z"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 1 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List[FractionBox["1", "2"], "-", "n"]], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["1", "2"], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric1F1] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mrow>  <mfrac>  <msqrt>  <mi> π </mi>  </msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msubsup>  <mi> L </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mi> n </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mi> z </mi>  </msup>  <mo> ⁢ </mo>  <mi> n </mi>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> p </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mi> z </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> p </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> Hypergeometric1F1 </ci>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Erfi </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> LaguerreL </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  <apply>  <ci> LaguerreL </ci>  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <ci> z </ci>  </apply>  <ci> n </ci>  <apply>  <sum />  <bvar>  <ci> p </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> LaguerreL </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <ci> LaguerreL </ci>  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <power />  <exponentiale />  <ci> z </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> p </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -2 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> LaguerreL </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <plus />  <ci> p </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <apply>  <ci> LaguerreL </ci>  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "n_"]], ",", FractionBox["1", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", "z"]], "]"]], "+", RowBox[List["2", " ", "n", " ", RowBox[List["LaguerreL", "[", RowBox[List["n", ",", RowBox[List["-", FractionBox["3", "2"]]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], RowBox[List["2", " ", SqrtBox["z"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", "n"]]], FractionBox[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", "n", "-", "p"]], ",", RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", "z"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", RowBox[List["-", "z"]]]], "]"]]]], RowBox[List["p", "+", "1"]]]]]]], "+", RowBox[List["n", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "-", "p", "-", "1"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "p"]], ",", "z"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", RowBox[List["-", "z"]]]], "]"]]]], RowBox[List["p", "+", "1"]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |