Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric1F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric1F1[a,b,z] > Specific values > For fixed z > For fixed z and a=9/2





http://functions.wolfram.com/07.20.03.0438.01









  


  










Input Form





Hypergeometric1F1[9/2, -(11/2), z] == (1/1091475) (E^z (1091475 + 4 z (-496125 + z (496125 + 8 z (-47250 + z (33075 + 4 z (-6615 + z (11025 + 2 z (6300 + z (1575 + 4 z (35 + z)))))))))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric1F1", "[", RowBox[List[FractionBox["9", "2"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "1091475"], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["1091475", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "496125"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "47250"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6615"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["11025", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["6300", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1575", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["35", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;9&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;2&quot;]]], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric1F1] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 1091475 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 35 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1575 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6300 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 11025 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 6615 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 33075 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 47250 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 496125 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 496125 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1091475 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric1F1 </ci> <cn type='rational'> 9 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 1091475 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 35 </cn> </apply> </apply> <cn type='integer'> 1575 </cn> </apply> </apply> <cn type='integer'> 6300 </cn> </apply> </apply> <cn type='integer'> 11025 </cn> </apply> </apply> <cn type='integer'> -6615 </cn> </apply> </apply> <cn type='integer'> 33075 </cn> </apply> </apply> <cn type='integer'> -47250 </cn> </apply> </apply> <cn type='integer'> 496125 </cn> </apply> </apply> <cn type='integer'> -496125 </cn> </apply> </apply> <cn type='integer'> 1091475 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric1F1", "[", RowBox[List[FractionBox["9", "2"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["1091475", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "496125"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "47250"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6615"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["11025", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["6300", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1575", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["35", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "1091475"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02