|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.20.03.0460.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric1F1[5, -(9/2), -z] ==
(1/11340)
(
(2 E^z (5670 +
z (6300 + z (5400 + z (5040 + z (6720 + z (-21 + 2 z) (-1152 +
z (731 + 4 (-27 + z) z))))))) + Sqrt[Pi] z^(11/2)
(-62985 - 8 z (-4845 + z (969 + 2 (-38 + z) z))) Erfi[Sqrt[z]])/E^z)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric1F1", "[", RowBox[List["5", ",", RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "11340"], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["5670", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["6300", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["5400", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["5040", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["6720", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21"]], "+", RowBox[List["2", " ", "z"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1152"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["731", "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "27"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "62985"]], "-", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4845"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["969", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "38"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["5", Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["9", "2"]]], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric1F1] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 11340 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 38 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 969 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 4845 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 62985 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 27 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 731 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1152 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6720 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 5040 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 5400 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6300 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 5670 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric1F1 </ci> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 11340 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -38 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 969 </cn> </apply> </apply> <cn type='integer'> -4845 </cn> </apply> </apply> <cn type='integer'> -62985 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -21 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -27 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 731 </cn> </apply> </apply> <cn type='integer'> -1152 </cn> </apply> </apply> <cn type='integer'> 6720 </cn> </apply> </apply> <cn type='integer'> 5040 </cn> </apply> </apply> <cn type='integer'> 5400 </cn> </apply> </apply> <cn type='integer'> 6300 </cn> </apply> </apply> <cn type='integer'> 5670 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric1F1", "[", RowBox[List["5", ",", RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["5670", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["6300", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["5400", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["5040", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["6720", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21"]], "+", RowBox[List["2", " ", "z"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1152"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["731", "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "27"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "62985"]], "-", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4845"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["969", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "38"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], "11340"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|