| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.20.04.0005.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Singularities[Hypergeometric1F1[a, b, z], b] == 
 {SequenceList[{-k, 1}, Element[k, Integers] && k >= 0], 
  {ComplexInfinity, Infinity}} | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Singularities", "[", RowBox[List[RowBox[List["Hypergeometric1F1", "[", RowBox[List["a", ",", "b", ",", "z"]], "]"]], ",", "b"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "k"]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]], "]"]], ",", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "}"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msub>  <mi> 𝒮𝒾𝓃ℊ </mi>  <mi> b </mi>  </msub>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 1 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <semantics>  <mi> a </mi>  <annotation encoding='Mathematica'> TagBox[TagBox[TagBox["a", Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]] </annotation>  </semantics>  <mo> ; </mo>  <semantics>  <mi> b </mi>  <annotation encoding='Mathematica'> TagBox[TagBox[TagBox["b", Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]] </annotation>  </semantics>  <mo> ; </mo>  <semantics>  <mi> z </mi>  <annotation encoding='Mathematica'> TagBox["z", Hypergeometric1F1, Rule[Editable, True]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> } </mo>  </mrow>  <mo> /; </mo>  <mrow>  <mi> k </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mo> { </mo>  <mrow>  <mover>  <mi> ∞ </mi>  <mo> ~ </mo>  </mover>  <mo> , </mo>  <mi> ∞ </mi>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> FormBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> 𝒮𝒾𝓃ℊ </ms>  <ms> b </ms>  </apply>  <ms> [ </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> ErrorBox </ci>  <ms>  </ms>  </apply>  <apply>  <ci> FormBox </ci>  <ms> 1 </ms>  <ci> TraditionalForm </ci>  </apply>  </apply>  <apply>  <ci> SubscriptBox </ci>  <ms> F </ms>  <apply>  <ci> FormBox </ci>  <ms> 1 </ms>  <ci> TraditionalForm </ci>  </apply>  </apply>  </list>  </apply>  <ms> ⁡ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> TagBox </ci>  <apply>  <ci> TagBox </ci>  <ms> a </ms>  <ci> Hypergeometric1F1 </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <apply>  <ci> InterpretTemplate </ci>  <apply>  <ci> Function </ci>  <list>  <apply>  <ci> SlotSequence </ci>  <cn type='integer'> 1 </cn>  </apply>  </list>  </apply>  </apply>  </apply>  <ci> Hypergeometric1F1 </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  </apply>  <ms> ; </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> TagBox </ci>  <apply>  <ci> TagBox </ci>  <ms> b </ms>  <ci> Hypergeometric1F1 </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <apply>  <ci> InterpretTemplate </ci>  <apply>  <ci> Function </ci>  <list>  <apply>  <ci> SlotSequence </ci>  <cn type='integer'> 1 </cn>  </apply>  </list>  </apply>  </apply>  </apply>  <ci> Hypergeometric1F1 </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  </apply>  <ms> ; </ms>  <apply>  <ci> TagBox </ci>  <ms> z </ms>  <ci> Hypergeometric1F1 </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> ] </ms>  </list>  </apply>  <ms> ⩵ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> - </ms>  <ms> k </ms>  </list>  </apply>  <ms> , </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  <ms> /; </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> ∈ </ms>  <ms> ℕ </ms>  </list>  </apply>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> OverscriptBox </ci>  <ms> ∞ </ms>  <ms> ~ </ms>  </apply>  <ms> , </ms>  <ms> ∞ </ms>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  <ci> TraditionalForm </ci>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Singularities", "[", RowBox[List[RowBox[List["Hypergeometric1F1", "[", RowBox[List["a_", ",", "b_", ",", "z_"]], "]"]], ",", "b_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "k"]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]], "]"]], ",", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "}"]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |