Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric1F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric1F1[a,b,z] > Integration > Definite integration > Involving the direct function





http://functions.wolfram.com/07.20.21.0012.01









  


  










Input Form





Integrate[(t^(\[Alpha] - 1) Hypergeometric1F1[a, b, -t])/E^(c t), {t, 0, Infinity}] == (Gamma[\[Alpha]] Hypergeometric2F1[a, \[Alpha], b, -(1/c)])/c^\[Alpha] /; Re[\[Alpha]] > 0 && Re[c] > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[SuperscriptBox["t", RowBox[List["\[Alpha]", "-", "1"]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", "t"]]], RowBox[List["Hypergeometric1F1", "[", RowBox[List["a", ",", "b", ",", RowBox[List["-", "t"]]]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["c", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", "\[Alpha]", "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "\[Alpha]", ",", "b", ",", RowBox[List["-", FractionBox["1", "c"]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "c", "]"]], ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <msup> <mi> t </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8290; </mo> <mi> t </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mrow> <mo> - </mo> <mi> t </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;a&quot;, Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;b&quot;, Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;t&quot;]], Hypergeometric1F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mi> c </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> &#945; </mi> </mrow> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> c </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Alpha]&quot;, Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;b&quot;, Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;c&quot;]]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> t </ci> </apply> </apply> <apply> <ci> Hypergeometric1F1 </ci> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <ci> &#945; </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <real /> <ci> &#945; </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <apply> <real /> <ci> c </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c_"]], " ", "t_"]]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["a_", ",", "b_", ",", RowBox[List["-", "t_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["c", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", "\[Alpha]", "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "\[Alpha]", ",", "b", ",", RowBox[List["-", FractionBox["1", "c"]]]]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", "c", "]"]], ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29