| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.20.26.0023.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | (Hypergeometric1F1[a, 2 a, z] Hypergeometric1F1[c, 2 c, z])/E^z == 
 2^(-1 + a + c) Sqrt[Pi] Gamma[1/2 + a] Gamma[1/2 + c] 
  MeijerG[{{1 - (a + c)/2, (1 - a - c)/2}, {1/2}}, 
   {{0}, {1 - a - c, 1/2 - c, 1/2 - a, 1/2}}, z^2/4] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], RowBox[List["Hypergeometric1F1", "[", RowBox[List["a", ",", RowBox[List["2", " ", "a"]], ",", "z"]], "]"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["c", ",", RowBox[List["2", "c"]], ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "c"]]], " ", SqrtBox["\[Pi]"], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "a"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "c"]], "]"]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "c"]], "2"]]], ",", FractionBox[RowBox[List["1", "-", "a", "-", "c"]], "2"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a", "-", "c"]], ",", RowBox[List[FractionBox["1", "2"], "-", "c"]], ",", RowBox[List[FractionBox["1", "2"], "-", "a"]], ",", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 1 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ; </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["a", Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["2", " ", "a"]], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric1F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 1 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ; </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["c", Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["2", " ", "c"]], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric1F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation>  </semantics>  </mrow>  <mo> ⩵ </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 3 </mn>  <mo> , </mo>  <mn> 5 </mn>  </mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mn> 4 </mn>  </mfrac>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> c </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> a </mi>  <mo> - </mo>  <mi> c </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> a </mi>  <mo> - </mo>  <mi> c </mi>  </mrow>  <mo> , </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> c </mi>  </mrow>  <mo> , </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["3", ",", "5"]], RowBox[List["1", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[FractionBox[SuperscriptBox["z", "2"], "4"], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "c"]], "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["1", "-", "a", "-", "c"]], "2"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "a", "-", "c"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], "-", "c"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], "-", "a"]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric1F1 </ci>  <ci> a </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <ci> z </ci>  </apply>  <apply>  <ci> Hypergeometric1F1 </ci>  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <ci> Γ </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> Γ </ci>  <apply>  <plus />  <ci> c </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <ci> MeijerG </ci>  <list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> c </ci>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </list>  <list>  <cn type='rational'> 1 <sep /> 2 </cn>  </list>  </list>  <list>  <list>  <cn type='integer'> 0 </cn>  </list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </list>  </list>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z_"]]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["a_", ",", RowBox[List["2", " ", "a_"]], ",", "z_"]], "]"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["c_", ",", RowBox[List["2", " ", "c_"]], ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "c"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "a"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "c"]], "]"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "c"]], "2"]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "-", "c"]], ")"]]]]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a", "-", "c"]], ",", RowBox[List[FractionBox["1", "2"], "-", "c"]], ",", RowBox[List[FractionBox["1", "2"], "-", "a"]], ",", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |