|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.21.03.0269.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric1F1Regularized[-(3/2), 11/2, -z] ==
(1/(46080 Sqrt[Pi] z^(9/2)))
((2 Sqrt[z] (-315 + 2 z (165 + 4 z (-33 + 2 z (1 + z) (15 + 2 z)))) +
E^z Sqrt[Pi] (315 +
4 z (-135 + z (135 + 4 z (-30 + z (45 + 4 z (9 + z)))))) Erf[Sqrt[z]])/
E^z)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric1F1Regularized", "[", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], ",", FractionBox["11", "2"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["46080", " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "315"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["165", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "33"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["315", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "135"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["135", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "30"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["45", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["9", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox[OverscriptBox["F", "~"], "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["3", "2"]]], Hypergeometric1F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["11", "2"], Hypergeometric1F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], Hypergeometric1F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric1F1Regularized] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 46080 </mn> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 33 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 165 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 315 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 45 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 30 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 135 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 135 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 315 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric1F1Regularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='rational'> 11 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 46080 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> 15 </cn> </apply> </apply> <cn type='integer'> -33 </cn> </apply> </apply> <cn type='integer'> 165 </cn> </apply> </apply> <cn type='integer'> -315 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> 45 </cn> </apply> </apply> <cn type='integer'> -30 </cn> </apply> </apply> <cn type='integer'> 135 </cn> </apply> </apply> <cn type='integer'> -135 </cn> </apply> </apply> <cn type='integer'> 315 </cn> </apply> <apply> <ci> Erf </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric1F1Regularized", "[", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], ",", FractionBox["11", "2"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "315"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["165", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "33"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["315", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "135"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["135", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "30"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["45", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["9", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], RowBox[List["46080", " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{},{b},z] | HypergeometricPFQRegularized[{a1,a2},{b1},z] | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] | |
|
|
|