| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.21.03.0517.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric1F1Regularized[5, -(5/2), z] == 
 (1/(384 Sqrt[Pi])) 
  (
   2 (-360 + 
     z (720 + z (-1440 + z (6720 + z (7575 + 2 z (1113 + 2 z 
                (59 + 2 z))))))) + E^z Sqrt[Pi] z^(7/2) 
    (19305 + 8 z (2145 + z (585 + 2 z (30 + z)))) Erf[Sqrt[z]]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric1F1Regularized", "[", RowBox[List["5", ",", RowBox[List["-", FractionBox["5", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["384", " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "360"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["720", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1440"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["6720", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["7575", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["1113", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["59", "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["(", RowBox[List["19305", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["2145", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["585", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["30", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 1 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 5 </mn>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 5 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox[OverscriptBox["F", "~"], "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["5", Hypergeometric1F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["5", "2"]]], Hypergeometric1F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", Hypergeometric1F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric1F1Regularized] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 384 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mi> z </mi>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 30 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 585 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 2145 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 19305 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> erf </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 7 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 59 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 1113 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 7575 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 6720 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 1440 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 720 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 360 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> Hypergeometric1F1Regularized </ci>  <cn type='integer'> 5 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 384 </cn>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <ci> z </ci>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 30 </cn>  </apply>  </apply>  <cn type='integer'> 585 </cn>  </apply>  </apply>  <cn type='integer'> 2145 </cn>  </apply>  </apply>  <cn type='integer'> 19305 </cn>  </apply>  <apply>  <ci> Erf </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 59 </cn>  </apply>  </apply>  <cn type='integer'> 1113 </cn>  </apply>  </apply>  <cn type='integer'> 7575 </cn>  </apply>  </apply>  <cn type='integer'> 6720 </cn>  </apply>  </apply>  <cn type='integer'> -1440 </cn>  </apply>  </apply>  <cn type='integer'> 720 </cn>  </apply>  </apply>  <cn type='integer'> -360 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric1F1Regularized", "[", RowBox[List["5", ",", RowBox[List["-", FractionBox["5", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "360"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["720", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1440"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["6720", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["7575", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["1113", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["59", "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["(", RowBox[List["19305", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["2145", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["585", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["30", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]]]], RowBox[List["384", " ", SqrtBox["\[Pi]"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQRegularized[{},{b},z] |  | HypergeometricPFQRegularized[{a1,a2},{b1},z] |  | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |