|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.21.20.0014.02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[Hypergeometric1F1Regularized[a, a + 1, z], {a, n}] ==
D[1/Gamma[a + 1], {a, n}] Exp[z] -
n! z Sum[(((-1)^k Gamma[a + 1]^(k + 1))/(n - k)!)
D[1/Gamma[a + 1], {a, n - k}] HypergeometricPFQRegularized[
{Subscript[c, 1], \[Ellipsis], Subscript[c, k + 1]},
{Subscript[c, 1] + 1, \[Ellipsis], Subscript[c, k + 1] + 1}, z],
{k, 0, n}] /; Subscript[c, 1] == Subscript[c, 2] == \[Ellipsis] ==
Subscript[c, k + 1] == a + 1 && Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "n"]], "}"]]], RowBox[List["Hypergeometric1F1Regularized", "[", RowBox[List["a", ",", RowBox[List["a", "+", "1"]], ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "n"]], "}"]]], FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["a", "+", "1"]], "]"]]]]], RowBox[List["Exp", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["n", "!"]], "z", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["a", "+", "1"]], "]"]], RowBox[List["k", "+", "1"]]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]]], RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", RowBox[List["n", "-", "k"]]]], "}"]]], FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["a", "+", "1"]], "]"]]]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["k", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["c", "1"], "+", "1"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["c", RowBox[List["k", "+", "1"]]], "+", "1"]]]], "}"]], ",", "z"]], "]"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["k", "+", "1"]]], "\[Equal]", RowBox[List["a", "+", "1"]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["a", Hypergeometric1F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["a", "+", "1"]], Hypergeometric1F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1Regularized, Rule[Editable, False]], ";", TagBox["z", Hypergeometric1F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1Regularized] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> a </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <mfrac> <mn> 1 </mn> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> a </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mfrac> <mn> 1 </mn> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> a </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["k", "+", "1"]], TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox[RowBox[List["k", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> a </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> Hypergeometric1F1Regularized </ci> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> a </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <factorial /> <ci> n </ci> </apply> <ci> z </ci> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> a </ci> <degree> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </degree> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> … </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "n_"]], "}"]]]]], RowBox[List["Hypergeometric1F1Regularized", "[", RowBox[List["a_", ",", RowBox[List["a_", "+", "1"]], ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "n"]], "}"]]]]], FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["a", "+", "1"]], "]"]]]]], " ", SuperscriptBox["\[ExponentialE]", "z"]]], "-", RowBox[List[RowBox[List["n", "!"]], " ", "z", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["a", "+", "1"]], "]"]], RowBox[List["k", "+", "1"]]]]], ")"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a", ",", RowBox[List["n", "-", "k"]]]], "}"]]]]], FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["a", "+", "1"]], "]"]]]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["k", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["c", "1"], "+", "1"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["c", RowBox[List["k", "+", "1"]]], "+", "1"]]]], "}"]], ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["k", "+", "1"]]], "\[Equal]", RowBox[List["a", "+", "1"]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{},{b},z] | HypergeometricPFQRegularized[{a1,a2},{b1},z] | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] | |
|
|
|