|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.03.0314.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{1 + j}, {1/2 - m, 1/2 - n}, z] ==
((-1)^(j + n)/(j! Pochhammer[1/2, n] Pochhammer[1/2, m]))
Sum[Binomial[j, i] Pochhammer[1/2 - j - m, -i + j]
Sum[Binomial[i + m, k] Pochhammer[-1 - n, i - k + m]
((-1)^n (1 - 2 k - 2 m - 2 n) Pochhammer[-(1/2), k + n] +
(-1)^k Pi (k m + m n + z) z^((1/2) (-1 + k + n))
StruveL[-k - n, 2 Sqrt[z]] - (-1)^k m Pi z^((k + n)/2)
StruveL[1 - k - n, 2 Sqrt[z]]), {k, 0, i + m}], {i, 0, j}] /;
Element[j, Integers] && j >= 0 && Element[m, Integers] && m >= 0 &&
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", "+", "j"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "m"]], ",", RowBox[List[FractionBox["1", "2"], "-", "n"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "n"]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "n"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "m"]], "]"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "j"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["j", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "j", "-", "m"]], ",", RowBox[List[RowBox[List["-", "i"]], "+", "j"]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["i", "+", "m"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["i", "+", "m"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "n"]], ",", RowBox[List["i", "-", "k", "+", "m"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "k"]], "-", RowBox[List["2", " ", "m"]], "-", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["k", "+", "n"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["k", " ", "m"]], "+", RowBox[List["m", " ", "n"]], "+", "z"]], ")"]], SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "k", "+", "n"]], ")"]]]]], " ", RowBox[List["StruveL", "[", RowBox[List[RowBox[List[RowBox[List["-", "k"]], "-", "n"]], ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "m", " ", "\[Pi]", " ", SuperscriptBox["z", FractionBox[RowBox[List["k", "+", "n"]], "2"]], " ", RowBox[List["StruveL", "[", RowBox[List[RowBox[List["1", "-", "k", "-", "n"]], ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["j", "\[Element]", "Integers"]], "\[And]", RowBox[List["j", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> m </mi> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["j", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "2"], "-", "m"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], "-", "n"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> n </mi> </mrow> </msup> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "n"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> m </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "m"], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> <mtr> <mtd> <mi> i </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["j", Identity, Rule[Editable, True]]], List[TagBox["i", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> i </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "-", "j", "-", "m"]], ")"]], RowBox[List["j", "-", "i"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> i </mi> <mo> + </mo> <mi> m </mi> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> i </mi> <mo> + </mo> <mi> m </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["i", "+", "m"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> i </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> m </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "n"]], "-", "1"]], ")"]], RowBox[List["i", "-", "k", "+", "m"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> L </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveL </ci> </annotation-xml> </semantics> </mstyle> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> L </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveL </ci> </annotation-xml> </semantics> </mstyle> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> n </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], RowBox[List["k", "+", "n"]]], Pochhammer] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> j </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> n </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> j </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> j </ci> <ci> i </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> i </ci> <ci> m </ci> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> i </ci> <ci> m </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> m </ci> <pi /> <apply> <power /> <ci> z </ci> <apply> <times /> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> StruveL </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <pi /> <apply> <plus /> <apply> <times /> <ci> k </ci> <ci> m </ci> </apply> <apply> <times /> <ci> n </ci> <ci> m </ci> </apply> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> StruveL </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> j </ci> <ci> ℕ </ci> </apply> <apply> <in /> <ci> m </ci> <ci> ℕ </ci> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", "+", "j_"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "m_"]], ",", RowBox[List[FractionBox["1", "2"], "-", "n_"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "j"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["j", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "j", "-", "m"]], ",", RowBox[List[RowBox[List["-", "i"]], "+", "j"]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["i", "+", "m"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["i", "+", "m"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "n"]], ",", RowBox[List["i", "-", "k", "+", "m"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "k"]], "-", RowBox[List["2", " ", "m"]], "-", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["k", "+", "n"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["k", " ", "m"]], "+", RowBox[List["m", " ", "n"]], "+", "z"]], ")"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "k", "+", "n"]], ")"]]]]], " ", RowBox[List["StruveL", "[", RowBox[List[RowBox[List[RowBox[List["-", "k"]], "-", "n"]], ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "m", " ", "\[Pi]", " ", SuperscriptBox["z", FractionBox[RowBox[List["k", "+", "n"]], "2"]], " ", RowBox[List["StruveL", "[", RowBox[List[RowBox[List["1", "-", "k", "-", "n"]], ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]]]]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "n"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "m"]], "]"]]]]], "/;", RowBox[List[RowBox[List["j", "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|