Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-11/2, b1`>=-11/2 > For fixed z and a1=-11/2, b1=3





http://functions.wolfram.com/07.22.03.0602.01









  


  










Input Form





HypergeometricPFQ[{-(11/2)}, {3, 3}, -z] == (1/(4108830350625 z^(3/2))) (8 (Sqrt[z] (-21070924875 + 652968993600 z + 866349237600 z^2 + 221439614400 z^3 + 17184326400 z^4 + 483747840 z^5 + 5074944 z^6 + 16384 z^7) BesselJ[0, Sqrt[z]]^2 - 2 (-21070924875 + 125966194200 z + 362484460800 z^2 + 104659192800 z^3 + 8414956800 z^4 + 239984640 z^5 + 2531328 z^6 + 8192 z^7) BesselJ[0, Sqrt[z]] BesselJ[1, Sqrt[z]] + Sqrt[z] (-64131484725 + 344484478800 z + 767160655200 z^2 + 213195038400 z^3 + 16946208000 z^4 + 481222656 z^5 + 5066752 z^6 + 16384 z^7) BesselJ[1, Sqrt[z]]^2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["3", ",", "3"]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4108830350625", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21070924875"]], "+", RowBox[List["652968993600", " ", "z"]], "+", RowBox[List["866349237600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["221439614400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["17184326400", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["483747840", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5074944", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["16384", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List["0", ",", SqrtBox["z"]]], "]"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21070924875"]], "+", RowBox[List["125966194200", " ", "z"]], "+", RowBox[List["362484460800", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["104659192800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["8414956800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["239984640", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2531328", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["8192", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "64131484725"]], "+", RowBox[List["344484478800", " ", "z"]], "+", RowBox[List["767160655200", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["213195038400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["16946208000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["481222656", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5066752", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["16384", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List["1", ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;3&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;3&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4108830350625 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16384 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5074944 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 483747840 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17184326400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 221439614400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 866349237600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 652968993600 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 21070924875 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> J </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8192 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2531328 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 239984640 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8414956800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 104659192800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 362484460800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 125966194200 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 21070924875 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16384 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5066752 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 481222656 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16946208000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 213195038400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 767160655200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 344484478800 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 64131484725 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> J </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </list> <list> <cn type='integer'> 3 </cn> <cn type='integer'> 3 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4108830350625 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 16384 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5074944 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 483747840 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17184326400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 221439614400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 866349237600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 652968993600 </cn> <ci> z </ci> </apply> <cn type='integer'> -21070924875 </cn> </apply> <apply> <power /> <apply> <ci> BesselJ </ci> <cn type='integer'> 0 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 8192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2531328 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 239984640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8414956800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 104659192800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 362484460800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 125966194200 </cn> <ci> z </ci> </apply> <cn type='integer'> -21070924875 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> BesselJ </ci> <cn type='integer'> 0 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 16384 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5066752 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 481222656 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16946208000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 213195038400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 767160655200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 344484478800 </cn> <ci> z </ci> </apply> <cn type='integer'> -64131484725 </cn> </apply> <apply> <power /> <apply> <ci> BesselJ </ci> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["3", ",", "3"]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21070924875"]], "+", RowBox[List["652968993600", " ", "z"]], "+", RowBox[List["866349237600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["221439614400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["17184326400", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["483747840", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5074944", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["16384", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List["0", ",", SqrtBox["z"]]], "]"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21070924875"]], "+", RowBox[List["125966194200", " ", "z"]], "+", RowBox[List["362484460800", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["104659192800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["8414956800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["239984640", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2531328", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["8192", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "64131484725"]], "+", RowBox[List["344484478800", " ", "z"]], "+", RowBox[List["767160655200", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["213195038400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["16946208000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["481222656", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5066752", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["16384", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List["1", ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]]]], RowBox[List["4108830350625", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02