Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-11/2, b1`>=-11/2 > For fixed z and a1=-11/2, b1=9/2





http://functions.wolfram.com/07.22.03.0640.01









  


  










Input Form





HypergeometricPFQ[{-(11/2)}, {9/2, 5}, -z] == (4 (2 Sqrt[z] (-11588006707200 + 45155168826075 z - 50885743293000 z^2 + 100491856264800 z^3 + 59785980612480 z^4 + 7110985688064 z^5 + 289979099136 z^6 + 4722892800 z^7 + 30834688 z^8 + 65536 z^9) BesselJ[0, 2 Sqrt[z]] - (-23176013414400 + 67868800686225 z - 70130324880000 z^2 + 75718746734400 z^3 + 56464322711040 z^4 + 6969992283648 z^5 + 287644336128 z^6 + 4707532800 z^7 + 30801920 z^8 + 65536 z^9) BesselJ[1, 2 Sqrt[z]]) + Pi Sqrt[z] (-102088631019375 + 245012714446500 z - 261346895409600 z^2 + 348462527212800 z^3 + 232308351475200 z^4 + 28158588057600 z^5 + 1155224125440 z^6 + 18860802048 z^7 + 123273216 z^8 + 262144 z^9) BesselJ[1, 2 Sqrt[z]] StruveH[0, 2 Sqrt[z]] - Pi Sqrt[z] (-102088631019375 + 245012714446500 z - 261346895409600 z^2 + 348462527212800 z^3 + 232308351475200 z^4 + 28158588057600 z^5 + 1155224125440 z^6 + 18860802048 z^7 + 123273216 z^8 + 262144 z^9) BesselJ[0, 2 Sqrt[z]] StruveH[1, 2 Sqrt[z]])/(386174921932800 z^(7/2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", "5"]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11588006707200"]], "+", RowBox[List["45155168826075", " ", "z"]], "-", RowBox[List["50885743293000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["100491856264800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["59785980612480", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7110985688064", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["289979099136", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4722892800", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["30834688", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "23176013414400"]], "+", RowBox[List["67868800686225", " ", "z"]], "-", RowBox[List["70130324880000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["75718746734400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["56464322711040", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6969992283648", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["287644336128", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4707532800", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["30801920", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["\[Pi]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "102088631019375"]], "+", RowBox[List["245012714446500", " ", "z"]], "-", RowBox[List["261346895409600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["348462527212800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["232308351475200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["28158588057600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1155224125440", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["18860802048", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["123273216", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["262144", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "102088631019375"]], "+", RowBox[List["245012714446500", " ", "z"]], "-", RowBox[List["261346895409600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["348462527212800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["232308351475200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["28158588057600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1155224125440", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["18860802048", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["123273216", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["262144", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["386174921932800", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 5 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;9&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;5&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 386174921932800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 65536 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 30834688 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4722892800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 289979099136 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7110985688064 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 59785980612480 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 100491856264800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 50885743293000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 45155168826075 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 11588006707200 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 65536 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 30801920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4707532800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 287644336128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6969992283648 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 56464322711040 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 75718746734400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 70130324880000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 67868800686225 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 23176013414400 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 262144 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 123273216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 18860802048 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1155224125440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 28158588057600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 232308351475200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 348462527212800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 261346895409600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 245012714446500 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 102088631019375 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 262144 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 123273216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 18860802048 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1155224125440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 28158588057600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 232308351475200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 348462527212800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 261346895409600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 245012714446500 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 102088631019375 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </list> <list> <cn type='rational'> 9 <sep /> 2 </cn> <cn type='integer'> 5 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 386174921932800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30834688 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4722892800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 289979099136 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7110985688064 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 59785980612480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 100491856264800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 50885743293000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 45155168826075 </cn> <ci> z </ci> </apply> <cn type='integer'> -11588006707200 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30801920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4707532800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 287644336128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6969992283648 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 56464322711040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 75718746734400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 70130324880000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 67868800686225 </cn> <ci> z </ci> </apply> <cn type='integer'> -23176013414400 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 262144 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 123273216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 18860802048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1155224125440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 28158588057600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 232308351475200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 348462527212800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 261346895409600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 245012714446500 </cn> <ci> z </ci> </apply> <cn type='integer'> -102088631019375 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> StruveH </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 262144 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 123273216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 18860802048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1155224125440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 28158588057600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 232308351475200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 348462527212800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 261346895409600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 245012714446500 </cn> <ci> z </ci> </apply> <cn type='integer'> -102088631019375 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> StruveH </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", "5"]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11588006707200"]], "+", RowBox[List["45155168826075", " ", "z"]], "-", RowBox[List["50885743293000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["100491856264800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["59785980612480", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7110985688064", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["289979099136", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4722892800", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["30834688", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "23176013414400"]], "+", RowBox[List["67868800686225", " ", "z"]], "-", RowBox[List["70130324880000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["75718746734400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["56464322711040", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6969992283648", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["287644336128", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4707532800", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["30801920", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["\[Pi]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "102088631019375"]], "+", RowBox[List["245012714446500", " ", "z"]], "-", RowBox[List["261346895409600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["348462527212800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["232308351475200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["28158588057600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1155224125440", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["18860802048", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["123273216", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["262144", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "102088631019375"]], "+", RowBox[List["245012714446500", " ", "z"]], "-", RowBox[List["261346895409600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["348462527212800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["232308351475200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["28158588057600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1155224125440", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["18860802048", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["123273216", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["262144", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], RowBox[List["386174921932800", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02