|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.03.0854.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(9/2)}, {1/2, 3}, -z] ==
(1/(3243240 z^(3/2)))
(4 (2 Sqrt[z] (-17010 + 340200 z + 2498112 z^2 + 1674315 z^3 + 218076 z^4 +
7504 z^5 + 64 z^6) BesselJ[0, 2 Sqrt[z]] -
(-34020 - 113400 z + 1821024 z^2 + 1571553 z^3 + 214380 z^4 + 7472 z^5 +
64 z^6) BesselJ[1, 2 Sqrt[z]]) +
Pi z^(5/2) (8513505 + 6486480 z + 864864 z^2 + 29952 z^3 + 256 z^4)
BesselJ[1, 2 Sqrt[z]] StruveH[0, 2 Sqrt[z]] -
Pi z^(5/2) (8513505 + 6486480 z + 864864 z^2 + 29952 z^3 + 256 z^4)
BesselJ[0, 2 Sqrt[z]] StruveH[1, 2 Sqrt[z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["9", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "3"]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["3243240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "17010"]], "+", RowBox[List["340200", " ", "z"]], "+", RowBox[List["2498112", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1674315", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["218076", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7504", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["64", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "34020"]], "-", RowBox[List["113400", " ", "z"]], "+", RowBox[List["1821024", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1571553", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["214380", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7472", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["64", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["\[Pi]", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List["8513505", "+", RowBox[List["6486480", " ", "z"]], "+", RowBox[List["864864", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["29952", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List["8513505", "+", RowBox[List["6486480", " ", "z"]], "+", RowBox[List["864864", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["29952", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["9", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 3243240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 256 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 29952 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 864864 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6486480 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 8513505 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 256 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 29952 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 864864 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6486480 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 8513505 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7504 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 218076 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1674315 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2498112 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 340200 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 17010 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7472 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 214380 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1571553 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1821024 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 113400 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 34020 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 3 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3243240 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 29952 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 864864 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6486480 </cn> <ci> z </ci> </apply> <cn type='integer'> 8513505 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> StruveH </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 29952 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 864864 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6486480 </cn> <ci> z </ci> </apply> <cn type='integer'> 8513505 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> StruveH </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7504 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 218076 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1674315 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2498112 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 340200 </cn> <ci> z </ci> </apply> <cn type='integer'> -17010 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 214380 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1571553 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1821024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 113400 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -34020 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["9", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "3"]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "17010"]], "+", RowBox[List["340200", " ", "z"]], "+", RowBox[List["2498112", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1674315", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["218076", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7504", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["64", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "34020"]], "-", RowBox[List["113400", " ", "z"]], "+", RowBox[List["1821024", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1571553", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["214380", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7472", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["64", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["\[Pi]", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List["8513505", "+", RowBox[List["6486480", " ", "z"]], "+", RowBox[List["864864", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["29952", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List["8513505", "+", RowBox[List["6486480", " ", "z"]], "+", RowBox[List["864864", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["29952", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], RowBox[List["3243240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|