Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-7/2, b1`>=-11/2 > For fixed z and a1=-7/2, b1=1





http://functions.wolfram.com/07.22.03.1229.01









  


  










Input Form





HypergeometricPFQ[{-(7/2)}, {1, 6}, z] == (1/(241215975 z^4)) (32 (2 z (-3175200 + 893025 z - 363825 z^2 + 4013100 z^3 - 6541920 z^4 + 1269312 z^5 - 53504 z^6 + 512 z^7) BesselI[0, Sqrt[z]]^2 + Sqrt[z] (25401600 - 3969000 z + 1885275 z^2 - 1543500 z^3 + 11350080 z^4 - 2460096 z^5 + 106240 z^6 - 1024 z^7) BesselI[0, Sqrt[z]] BesselI[1, Sqrt[z]] - 2 (12700800 - 396900 z + 628425 z^2 - 639450 z^3 + 1543500 z^4 - 5945808 z^5 + 1242944 z^6 - 53248 z^7 + 512 z^8) BesselI[1, Sqrt[z]]^2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["7", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "6"]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["241215975", " ", SuperscriptBox["z", "4"]]]], RowBox[List["(", RowBox[List["32", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3175200"]], "+", RowBox[List["893025", " ", "z"]], "-", RowBox[List["363825", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4013100", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["6541920", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1269312", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["53504", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List["0", ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List["25401600", "-", RowBox[List["3969000", " ", "z"]], "+", RowBox[List["1885275", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1543500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["11350080", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["2460096", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["106240", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1024", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["12700800", "-", RowBox[List["396900", " ", "z"]], "+", RowBox[List["628425", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["639450", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1543500", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["5945808", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1242944", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["53248", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List["1", ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;6&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 241215975 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 53504 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1269312 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6541920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4013100 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 363825 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 893025 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3175200 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> I </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 1024 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 106240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2460096 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11350080 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1543500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1885275 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3969000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 25401600 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 53248 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1242944 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5945808 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1543500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 639450 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 628425 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 396900 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 12700800 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> I </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </list> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 6 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 241215975 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 53504 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1269312 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6541920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4013100 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 363825 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 893025 </cn> <ci> z </ci> </apply> <cn type='integer'> -3175200 </cn> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <cn type='integer'> 0 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 106240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2460096 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 11350080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1543500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1885275 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3969000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 25401600 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> BesselI </ci> <cn type='integer'> 0 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 53248 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1242944 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5945808 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1543500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 639450 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 628425 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 396900 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 12700800 </cn> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["7", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "6"]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["32", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3175200"]], "+", RowBox[List["893025", " ", "z"]], "-", RowBox[List["363825", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4013100", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["6541920", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1269312", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["53504", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List["0", ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List["25401600", "-", RowBox[List["3969000", " ", "z"]], "+", RowBox[List["1885275", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1543500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["11350080", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["2460096", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["106240", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1024", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["12700800", "-", RowBox[List["396900", " ", "z"]], "+", RowBox[List["628425", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["639450", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1543500", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["5945808", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1242944", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["53248", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List["1", ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]]]], RowBox[List["241215975", " ", SuperscriptBox["z", "4"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02