Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-3/2, b1`>=-11/2 > For fixed z and a1=-3/2, b1=9/2





http://functions.wolfram.com/07.22.03.2007.01









  


  










Input Form





HypergeometricPFQ[{-(3/2)}, {9/2, 5}, z] == (1/(126720 z^(7/2))) (4 (2 Sqrt[z] (69120 + 132075 z + 73080 z^2 + 50112 z^3 - 10624 z^4 + 256 z^5) BesselI[0, 2 Sqrt[z]] - (138240 + 177345 z + 90000 z^2 + 45024 z^3 - 10496 z^4 + 256 z^5) BesselI[1, 2 Sqrt[z]]) - Pi Sqrt[z] (467775 + 623700 z + 332640 z^2 + 190080 z^3 - 42240 z^4 + 1024 z^5) BesselI[1, 2 Sqrt[z]] StruveL[0, 2 Sqrt[z]] + Pi Sqrt[z] (467775 + 623700 z + 332640 z^2 + 190080 z^3 - 42240 z^4 + 1024 z^5) BesselI[0, 2 Sqrt[z]] StruveL[1, 2 Sqrt[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", "5"]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["126720", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["69120", "+", RowBox[List["132075", " ", "z"]], "+", RowBox[List["73080", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["50112", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["10624", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["138240", "+", RowBox[List["177345", " ", "z"]], "+", RowBox[List["90000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["45024", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["10496", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]], "-", RowBox[List["\[Pi]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["467775", "+", RowBox[List["623700", " ", "z"]], "+", RowBox[List["332640", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["190080", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["42240", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1024", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveL", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["467775", "+", RowBox[List["623700", " ", "z"]], "+", RowBox[List["332640", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["190080", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["42240", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1024", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveL", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 5 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;9&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;5&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 126720 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10624 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 50112 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 73080 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 132075 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 69120 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10496 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 45024 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 90000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 177345 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 138240 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1024 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 42240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 190080 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 332640 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 623700 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 467775 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> L </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveL </ci> </annotation-xml> </semantics> </mstyle> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1024 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 42240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 190080 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 332640 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 623700 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 467775 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> L </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveL </ci> </annotation-xml> </semantics> </mstyle> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <list> <cn type='rational'> 9 <sep /> 2 </cn> <cn type='integer'> 5 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 126720 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10624 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 50112 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 73080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 132075 </cn> <ci> z </ci> </apply> <cn type='integer'> 69120 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10496 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 45024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 90000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 177345 </cn> <ci> z </ci> </apply> <cn type='integer'> 138240 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 42240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 190080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 332640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 623700 </cn> <ci> z </ci> </apply> <cn type='integer'> 467775 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> StruveL </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 42240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 190080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 332640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 623700 </cn> <ci> z </ci> </apply> <cn type='integer'> 467775 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> StruveL </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", "5"]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["69120", "+", RowBox[List["132075", " ", "z"]], "+", RowBox[List["73080", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["50112", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["10624", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["138240", "+", RowBox[List["177345", " ", "z"]], "+", RowBox[List["90000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["45024", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["10496", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]], "-", RowBox[List["\[Pi]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["467775", "+", RowBox[List["623700", " ", "z"]], "+", RowBox[List["332640", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["190080", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["42240", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1024", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveL", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["467775", "+", RowBox[List["623700", " ", "z"]], "+", RowBox[List["332640", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["190080", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["42240", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1024", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["StruveL", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], RowBox[List["126720", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02