Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-1/2, b1`>=-11/2 > For fixed z and a1=-1/2, b1=9/2





http://functions.wolfram.com/07.22.03.2315.01









  


  










Input Form





HypergeometricPFQ[{-(1/2)}, {9/2, 11/2}, z] == (1/(262144 z^(9/2))) (2205 (2 Sqrt[z] (-630 - 435 z - 134 z^2 - 38 z^3 + 4 z^4) Cosh[2 Sqrt[z]] + (630 - 525 z - 150 z^2 - 34 z^3 + 4 z^4) Sinh[2 Sqrt[z]] - 8 z (-225 - 180 z - 60 z^2 - 20 z^3 + 2 z^4) SinhIntegral[2 Sqrt[z]]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", FractionBox["11", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["262144", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]], RowBox[List["(", RowBox[List["2205", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "630"]], "-", RowBox[List["435", " ", "z"]], "-", RowBox[List["134", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["38", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["630", "-", RowBox[List["525", " ", "z"]], "-", RowBox[List["150", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["34", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "225"]], "-", RowBox[List["180", " ", "z"]], "-", RowBox[List["60", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["20", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;9&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;11&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 262144 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2205 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 38 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 134 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 435 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 630 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 34 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 150 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 525 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 630 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 180 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 225 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </list> <list> <cn type='rational'> 9 <sep /> 2 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 262144 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2205 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 38 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 134 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 435 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -630 </cn> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 34 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 150 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 525 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 630 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 180 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -225 </cn> </apply> <apply> <ci> SinhIntegral </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", FractionBox["11", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2205", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "630"]], "-", RowBox[List["435", " ", "z"]], "-", RowBox[List["134", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["38", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["630", "-", RowBox[List["525", " ", "z"]], "-", RowBox[List["150", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["34", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "225"]], "-", RowBox[List["180", " ", "z"]], "-", RowBox[List["60", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["20", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]], RowBox[List["262144", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02