Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=11/2, b1`>=-11/2 > For fixed z and a1=11/2, b1=-9/2





http://functions.wolfram.com/07.22.03.5564.01









  


  










Input Form





HypergeometricPFQ[{11/2}, {-(9/2), -(7/2)}, z] == (1 + (148 z)/63 + (3296 z^2)/2205 + (1472 z^3)/2205 + (512 z^4)/945 - (2048 z^5)/1575 - (557056 z^6)/6251175 - (16384 z^7)/93767625) Cosh[2 Sqrt[z]] - (1/6251175) (2 Sqrt[z] (6251175 + 6350400 z + 3099600 z^2 + 1451520 z^3 + 2032128 z^4 + 1667072 z^5 + 20480 z^6) Sinh[2 Sqrt[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["11", "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["148", " ", "z"]], "63"], "+", FractionBox[RowBox[List["3296", " ", SuperscriptBox["z", "2"]]], "2205"], "+", FractionBox[RowBox[List["1472", " ", SuperscriptBox["z", "3"]]], "2205"], "+", FractionBox[RowBox[List["512", " ", SuperscriptBox["z", "4"]]], "945"], "-", FractionBox[RowBox[List["2048", " ", SuperscriptBox["z", "5"]]], "1575"], "-", FractionBox[RowBox[List["557056", " ", SuperscriptBox["z", "6"]]], "6251175"], "-", FractionBox[RowBox[List["16384", " ", SuperscriptBox["z", "7"]]], "93767625"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "-", RowBox[List[FractionBox["1", "6251175"], RowBox[List["(", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["6251175", "+", RowBox[List["6350400", " ", "z"]], "+", RowBox[List["3099600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1451520", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2032128", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1667072", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["20480", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;11&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 16384 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mn> 93767625 </mn> </mfrac> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 557056 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mn> 6251175 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2048 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mn> 1575 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 945 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 1472 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 2205 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3296 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 2205 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 148 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 63 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6251175 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20480 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1667072 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2032128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1451520 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3099600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6350400 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 6251175 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 11 <sep /> 2 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16384 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> <apply> <power /> <cn type='integer'> 93767625 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 557056 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 6251175 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <cn type='integer'> 1575 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 945 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 2205 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2205 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 148 </cn> <ci> z </ci> <apply> <power /> <cn type='integer'> 63 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 6251175 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 20480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1667072 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2032128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1451520 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3099600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6350400 </cn> <ci> z </ci> </apply> <cn type='integer'> 6251175 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["11", "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["148", " ", "z"]], "63"], "+", FractionBox[RowBox[List["3296", " ", SuperscriptBox["z", "2"]]], "2205"], "+", FractionBox[RowBox[List["1472", " ", SuperscriptBox["z", "3"]]], "2205"], "+", FractionBox[RowBox[List["512", " ", SuperscriptBox["z", "4"]]], "945"], "-", FractionBox[RowBox[List["2048", " ", SuperscriptBox["z", "5"]]], "1575"], "-", FractionBox[RowBox[List["557056", " ", SuperscriptBox["z", "6"]]], "6251175"], "-", FractionBox[RowBox[List["16384", " ", SuperscriptBox["z", "7"]]], "93767625"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "-", FractionBox[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["6251175", "+", RowBox[List["6350400", " ", "z"]], "+", RowBox[List["3099600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1451520", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2032128", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1667072", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["20480", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "6251175"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02