Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=11/2, b1`>=-11/2 > For fixed z and a1=11/2, b1=-9/2





http://functions.wolfram.com/07.22.03.5576.01









  


  










Input Form





HypergeometricPFQ[{11/2}, {-(9/2), 3/2}, z] == (1 + (32 z)/27 - (208 z^2)/315 + (256 z^3)/3969 - (256 z^4)/25515) Cosh[2 Sqrt[z]] - (2 Sqrt[z] (893025 - 132300 z - 95760 z^2 + 17280 z^3 + 256 z^4) Sinh[2 Sqrt[z]])/893025










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["11", "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", FractionBox["3", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["32", " ", "z"]], "27"], "-", FractionBox[RowBox[List["208", " ", SuperscriptBox["z", "2"]]], "315"], "+", FractionBox[RowBox[List["256", " ", SuperscriptBox["z", "3"]]], "3969"], "-", FractionBox[RowBox[List["256", " ", SuperscriptBox["z", "4"]]], "25515"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "-", FractionBox[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["893025", "-", RowBox[List["132300", " ", "z"]], "-", RowBox[List["95760", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["17280", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "893025"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;11&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 25515 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3969 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 208 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 315 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 27 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17280 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 95760 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 132300 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 893025 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 893025 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 11 <sep /> 2 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 25515 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3969 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 208 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 315 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 32 </cn> <ci> z </ci> <apply> <power /> <cn type='integer'> 27 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 95760 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 132300 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 893025 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 893025 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["11", "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", FractionBox["3", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["32", " ", "z"]], "27"], "-", FractionBox[RowBox[List["208", " ", SuperscriptBox["z", "2"]]], "315"], "+", FractionBox[RowBox[List["256", " ", SuperscriptBox["z", "3"]]], "3969"], "-", FractionBox[RowBox[List["256", " ", SuperscriptBox["z", "4"]]], "25515"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "-", FractionBox[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["893025", "-", RowBox[List["132300", " ", "z"]], "-", RowBox[List["95760", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["17280", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "893025"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02