|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.03.5598.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{11/2}, {-(7/2), -(5/2)}, z] ==
(1 + (92 z)/35 + (432 z^2)/175 + (256 z^3)/75 - (512 z^4)/45 -
(533504 z^5)/496125 - (4096 z^6)/1488375) Cosh[2 Sqrt[z]] -
(1/496125) (2 Sqrt[z] (496125 + 642600 z + 544320 z^2 + 1128960 z^3 +
1371904 z^4 + 22528 z^5) Sinh[2 Sqrt[z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["11", "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["92", " ", "z"]], "35"], "+", FractionBox[RowBox[List["432", " ", SuperscriptBox["z", "2"]]], "175"], "+", FractionBox[RowBox[List["256", " ", SuperscriptBox["z", "3"]]], "75"], "-", FractionBox[RowBox[List["512", " ", SuperscriptBox["z", "4"]]], "45"], "-", FractionBox[RowBox[List["533504", " ", SuperscriptBox["z", "5"]]], "496125"], "-", FractionBox[RowBox[List["4096", " ", SuperscriptBox["z", "6"]]], "1488375"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "-", RowBox[List[FractionBox["1", "496125"], RowBox[List["(", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["642600", " ", "z"]], "+", RowBox[List["544320", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1128960", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1371904", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["22528", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["7", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 4096 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mn> 1488375 </mn> </mfrac> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 533504 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mn> 496125 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 512 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 45 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 256 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 75 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 432 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 175 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 92 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 35 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 22528 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1371904 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1128960 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 544320 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 642600 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 496125 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 496125 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 11 <sep /> 2 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4096 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 1488375 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 533504 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <cn type='integer'> 496125 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 45 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 75 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 432 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 175 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 92 </cn> <ci> z </ci> <apply> <power /> <cn type='integer'> 35 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 22528 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1371904 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1128960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 544320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 642600 </cn> <ci> z </ci> </apply> <cn type='integer'> 496125 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 496125 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["11", "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["92", " ", "z"]], "35"], "+", FractionBox[RowBox[List["432", " ", SuperscriptBox["z", "2"]]], "175"], "+", FractionBox[RowBox[List["256", " ", SuperscriptBox["z", "3"]]], "75"], "-", FractionBox[RowBox[List["512", " ", SuperscriptBox["z", "4"]]], "45"], "-", FractionBox[RowBox[List["533504", " ", SuperscriptBox["z", "5"]]], "496125"], "-", FractionBox[RowBox[List["4096", " ", SuperscriptBox["z", "6"]]], "1488375"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "-", FractionBox[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["642600", " ", "z"]], "+", RowBox[List["544320", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1128960", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1371904", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["22528", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "496125"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|