Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=6, b1`>=-11/2 > For fixed z and a1=6, b1=-11/2





http://functions.wolfram.com/07.22.03.5884.01









  


  










Input Form





HypergeometricPFQ[{6}, {-(11/2), 3/2}, z] == (1/1247400) (88 (14175 - 12600 z^2 + 2190 z^3 - 102 z^4 + 16 z^5) + 2 Pi Sqrt[z] (-340200 + 453600 z + 13230 z^2 - 17955 z^3 + 1800 z^4 + 16 z^5) StruveL[0, 2 Sqrt[z]] + Pi (680400 - 567000 z - 536760 z^2 + 112455 z^3 - 6120 z^4 + 688 z^5) StruveL[1, 2 Sqrt[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "6", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", FractionBox["3", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "1247400"], RowBox[List["(", RowBox[List[RowBox[List["88", " ", RowBox[List["(", RowBox[List["14175", "-", RowBox[List["12600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2190", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["102", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], "+", RowBox[List["2", " ", "\[Pi]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "340200"]], "+", RowBox[List["453600", " ", "z"]], "+", RowBox[List["13230", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["17955", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["StruveL", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["680400", "-", RowBox[List["567000", " ", "z"]], "-", RowBox[List["536760", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["112455", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["6120", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["688", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["StruveL", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 6 </mn> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;6&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 1247400 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 88 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 102 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2190 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 14175 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17955 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13230 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 453600 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 340200 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> L </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveL </ci> </annotation-xml> </semantics> </mstyle> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 688 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6120 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 112455 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 536760 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 567000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 680400 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> L </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveL </ci> </annotation-xml> </semantics> </mstyle> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 6 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 1247400 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 88 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 102 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2190 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 14175 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17955 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 13230 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 453600 </cn> <ci> z </ci> </apply> <cn type='integer'> -340200 </cn> </apply> <apply> <ci> StruveL </ci> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 688 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 112455 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 536760 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 567000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 680400 </cn> </apply> <apply> <ci> StruveL </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "6", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", FractionBox["3", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["88", " ", RowBox[List["(", RowBox[List["14175", "-", RowBox[List["12600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2190", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["102", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], "+", RowBox[List["2", " ", "\[Pi]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "340200"]], "+", RowBox[List["453600", " ", "z"]], "+", RowBox[List["13230", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["17955", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["StruveL", "[", RowBox[List["0", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["680400", "-", RowBox[List["567000", " ", "z"]], "-", RowBox[List["536760", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["112455", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["6120", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["688", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["StruveL", "[", RowBox[List["1", ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]]]], "1247400"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02