Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=5, b1>=-23/4 > For fixed z and a1=5, b1=-11/4





http://functions.wolfram.com/07.22.03.7508.01









  


  










Input Form





HypergeometricPFQ[{5}, {-(11/4), 23/4}, z] == -((1/(16777216 z^(19/4))) ((95 (16 E^(2 Sqrt[z]) z^(3/4) (2341213875 + 689729040 z + 91808640 z^2 + 6967296 z^3 + 358912 z^4 + 8192 z^5) + E^(4 Sqrt[z]) Sqrt[2 Pi] (7023641625 - 14047283250 Sqrt[z] + 14109715620 z - 9489720240 z^(3/2) + 4809475440 z^2 - 1960580160 z^(5/2) + 670481280 z^3 - 198277632 z^(7/2) + 51980544 z^4 - 12386304 z^(9/2) + 2727936 z^5 - 524288 z^(11/2) + 65536 z^6) Erf[Sqrt[2] z^(1/4)] - Sqrt[2 Pi] (7023641625 + 14047283250 Sqrt[z] + 14109715620 z + 9489720240 z^(3/2) + 4809475440 z^2 + 1960580160 z^(5/2) + 670481280 z^3 + 198277632 z^(7/2) + 51980544 z^4 + 12386304 z^(9/2) + 2727936 z^5 + 524288 z^(11/2) + 65536 z^6) Erfi[Sqrt[2] z^(1/4)]))/ E^(2 Sqrt[z])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "5", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "4"]]], ",", FractionBox["23", "4"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["16777216", " ", SuperscriptBox["z", RowBox[List["19", "/", "4"]]]]]], RowBox[List["(", RowBox[List["95", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["16", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List["2341213875", "+", RowBox[List["689729040", " ", "z"]], "+", RowBox[List["91808640", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["6967296", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["358912", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["8192", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["7023641625", "-", RowBox[List["14047283250", " ", SqrtBox["z"]]], "+", RowBox[List["14109715620", " ", "z"]], "-", RowBox[List["9489720240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["4809475440", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1960580160", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["670481280", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["198277632", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["51980544", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["12386304", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["2727936", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["524288", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["7023641625", "+", RowBox[List["14047283250", " ", SqrtBox["z"]]], "+", RowBox[List["14109715620", " ", "z"]], "+", RowBox[List["9489720240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["4809475440", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1960580160", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["670481280", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["198277632", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["51980544", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["12386304", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["2727936", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["524288", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;5&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;23&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 95 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8192 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 358912 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6967296 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 91808640 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 689729040 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2341213875 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 65536 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 524288 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2727936 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12386304 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 51980544 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 198277632 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 670481280 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1960580160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4809475440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9489720240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14109715620 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 14047283250 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mn> 7023641625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 65536 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 524288 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2727936 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12386304 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 51980544 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 198277632 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 670481280 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1960580160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4809475440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9489720240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14109715620 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 14047283250 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mn> 7023641625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 5 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 4 </cn> </apply> <cn type='rational'> 23 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 95 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 358912 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 91808640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 689729040 </cn> <ci> z </ci> </apply> <cn type='integer'> 2341213875 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 524288 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2727936 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12386304 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 51980544 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 198277632 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 670481280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1960580160 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4809475440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9489720240 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14109715620 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14047283250 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 7023641625 </cn> </apply> <apply> <ci> Erf </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 524288 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2727936 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12386304 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 51980544 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 198277632 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 670481280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1960580160 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4809475440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9489720240 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 14109715620 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 14047283250 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 7023641625 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "5", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "4"]]], ",", FractionBox["23", "4"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["95", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["16", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List["2341213875", "+", RowBox[List["689729040", " ", "z"]], "+", RowBox[List["91808640", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["6967296", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["358912", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["8192", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["7023641625", "-", RowBox[List["14047283250", " ", SqrtBox["z"]]], "+", RowBox[List["14109715620", " ", "z"]], "-", RowBox[List["9489720240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["4809475440", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1960580160", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["670481280", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["198277632", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["51980544", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["12386304", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["2727936", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["524288", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["7023641625", "+", RowBox[List["14047283250", " ", SqrtBox["z"]]], "+", RowBox[List["14109715620", " ", "z"]], "+", RowBox[List["9489720240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["4809475440", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1960580160", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["670481280", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["198277632", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["51980544", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["12386304", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["2727936", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["524288", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]]]], ")"]]]], RowBox[List["16777216", " ", SuperscriptBox["z", RowBox[List["19", "/", "4"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02