Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=6, b1>=-23/4 > For fixed z and a1=6, b1=-21/4





http://functions.wolfram.com/07.22.03.7701.01









  


  










Input Form





HypergeometricPFQ[{6}, {-(21/4), 21/4}, -z] == (1/(330301440 z^(17/4))) (-2 z^(1/4) (1149049526625 - 524748123900 z + 115848532800 z^2 - 15178363200 z^3 + 1762133760 z^4 - 209280000 z^5 + 3637248 z^6 + 262144 z^7) - Sqrt[Pi] FresnelS[(2 z^(1/4))/Sqrt[Pi]] (2 Sqrt[z] (1149049526625 - 831161331000 z + 201307906800 z^2 - 27020822400 z^3 + 3134419200 z^4 - 395089920 z^5 + 7864320 z^6 + 524288 z^7) Cos[2 Sqrt[z]] - 15 (76603301775 - 157548491100 z + 60064804800 z^2 - 10369719360 z^3 + 1194082560 z^4 - 157031424 z^5 + 12091392 z^6 + 262144 z^7) Sin[2 Sqrt[z]]) + Sqrt[Pi] FresnelC[(2 z^(1/4))/Sqrt[Pi]] (15 (76603301775 - 157548491100 z + 60064804800 z^2 - 10369719360 z^3 + 1194082560 z^4 - 157031424 z^5 + 12091392 z^6 + 262144 z^7) Cos[2 Sqrt[z]] + 2 Sqrt[z] (1149049526625 - 831161331000 z + 201307906800 z^2 - 27020822400 z^3 + 3134419200 z^4 - 395089920 z^5 + 7864320 z^6 + 524288 z^7) Sin[2 Sqrt[z]]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "6", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["21", "4"]]], ",", FractionBox["21", "4"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["330301440", " ", SuperscriptBox["z", RowBox[List["17", "/", "4"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List["1149049526625", "-", RowBox[List["524748123900", " ", "z"]], "+", RowBox[List["115848532800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["15178363200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1762133760", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["209280000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3637248", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["262144", " ", SuperscriptBox["z", "7"]]]]], ")"]]]], "-", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["1149049526625", "-", RowBox[List["831161331000", " ", "z"]], "+", RowBox[List["201307906800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["27020822400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3134419200", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["395089920", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["7864320", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["524288", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["15", " ", RowBox[List["(", RowBox[List["76603301775", "-", RowBox[List["157548491100", " ", "z"]], "+", RowBox[List["60064804800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["10369719360", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1194082560", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["157031424", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["12091392", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["262144", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["15", " ", RowBox[List["(", RowBox[List["76603301775", "-", RowBox[List["157548491100", " ", "z"]], "+", RowBox[List["60064804800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["10369719360", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1194082560", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["157031424", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["12091392", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["262144", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["1149049526625", "-", RowBox[List["831161331000", " ", "z"]], "+", RowBox[List["201307906800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["27020822400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3134419200", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["395089920", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["7864320", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["524288", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 6 </mn> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;6&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;21&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;21&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 330301440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 262144 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3637248 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 209280000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1762133760 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 15178363200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 115848532800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 524748123900 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1149049526625 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 524288 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7864320 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 395089920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3134419200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 27020822400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 201307906800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 831161331000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1149049526625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 262144 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12091392 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 157031424 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1194082560 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10369719360 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 60064804800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 157548491100 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 76603301775 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 262144 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12091392 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 157031424 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1194082560 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10369719360 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 60064804800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 157548491100 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 76603301775 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 524288 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7864320 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 395089920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3134419200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 27020822400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 201307906800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 831161331000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1149049526625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 6 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 21 <sep /> 4 </cn> </apply> <cn type='rational'> 21 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 330301440 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 262144 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3637248 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 209280000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1762133760 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15178363200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 115848532800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 524748123900 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 1149049526625 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 524288 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7864320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 395089920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3134419200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27020822400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 201307906800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 831161331000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 1149049526625 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 262144 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12091392 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 157031424 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1194082560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10369719360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 60064804800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 157548491100 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 76603301775 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 262144 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12091392 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 157031424 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1194082560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10369719360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 60064804800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 157548491100 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 76603301775 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 524288 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7864320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 395089920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3134419200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27020822400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 201307906800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 831161331000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 1149049526625 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "6", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["21", "4"]]], ",", FractionBox["21", "4"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List["1149049526625", "-", RowBox[List["524748123900", " ", "z"]], "+", RowBox[List["115848532800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["15178363200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1762133760", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["209280000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3637248", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["262144", " ", SuperscriptBox["z", "7"]]]]], ")"]]]], "-", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["1149049526625", "-", RowBox[List["831161331000", " ", "z"]], "+", RowBox[List["201307906800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["27020822400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3134419200", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["395089920", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["7864320", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["524288", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["15", " ", RowBox[List["(", RowBox[List["76603301775", "-", RowBox[List["157548491100", " ", "z"]], "+", RowBox[List["60064804800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["10369719360", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1194082560", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["157031424", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["12091392", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["262144", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["15", " ", RowBox[List["(", RowBox[List["76603301775", "-", RowBox[List["157548491100", " ", "z"]], "+", RowBox[List["60064804800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["10369719360", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1194082560", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["157031424", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["12091392", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["262144", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["1149049526625", "-", RowBox[List["831161331000", " ", "z"]], "+", RowBox[List["201307906800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["27020822400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3134419200", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["395089920", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["7864320", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["524288", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], RowBox[List["330301440", " ", SuperscriptBox["z", RowBox[List["17", "/", "4"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02