|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.03.7855.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{6}, {-(3/4), 15/4}, -z] ==
-((1/(15728640 z^(11/4)))
(77 (-4 z^(3/4) (-33075 + 27000 z + 24960 z^2 + 22528 z^3) -
Sqrt[Pi] FresnelS[(2 z^(1/4))/Sqrt[Pi]]
(45 (2205 - 5580 z + 5136 z^2 + 2560 z^3 + 4096 z^4) Cos[2 Sqrt[z]] +
2 Sqrt[z] (99225 - 118800 z + 108000 z^2 + 230400 z^3 - 8192 z^4)
Sin[2 Sqrt[z]]) + Sqrt[Pi] FresnelC[(2 z^(1/4))/Sqrt[Pi]]
(2 Sqrt[z] (-99225 + 118800 z - 108000 z^2 - 230400 z^3 + 8192 z^4)
Cos[2 Sqrt[z]] + 45 (2205 - 5580 z + 5136 z^2 + 2560 z^3 + 4096 z^4)
Sin[2 Sqrt[z]]))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "6", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["3", "4"]]], ",", FractionBox["15", "4"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["15728640", " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]]]]], RowBox[List["(", RowBox[List["77", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "33075"]], "+", RowBox[List["27000", " ", "z"]], "+", RowBox[List["24960", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["22528", " ", SuperscriptBox["z", "3"]]]]], ")"]]]], "-", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["45", " ", RowBox[List["(", RowBox[List["2205", "-", RowBox[List["5580", " ", "z"]], "+", RowBox[List["5136", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2560", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4096", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["99225", "-", RowBox[List["118800", " ", "z"]], "+", RowBox[List["108000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["230400", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["8192", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "99225"]], "+", RowBox[List["118800", " ", "z"]], "-", RowBox[List["108000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["230400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["8192", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["45", " ", RowBox[List["(", RowBox[List["2205", "-", RowBox[List["5580", " ", "z"]], "+", RowBox[List["5136", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2560", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4096", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 6 </mn> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 15 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["3", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["15", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 15728640 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 77 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 22528 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 24960 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 33075 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 45 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4096 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5136 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5580 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2205 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 8192 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 230400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 108000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 118800 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 99225 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8192 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 230400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 108000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 118800 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 99225 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 45 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4096 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5136 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5580 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2205 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 6 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <cn type='rational'> 15 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 15728640 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 77 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 22528 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 27000 </cn> <ci> z </ci> </apply> <cn type='integer'> -33075 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4096 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5136 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5580 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2205 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -8192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 230400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 108000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 118800 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 99225 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 230400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 108000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 118800 </cn> <ci> z </ci> </apply> <cn type='integer'> -99225 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4096 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5136 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5580 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2205 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "6", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["3", "4"]]], ",", FractionBox["15", "4"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["77", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "33075"]], "+", RowBox[List["27000", " ", "z"]], "+", RowBox[List["24960", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["22528", " ", SuperscriptBox["z", "3"]]]]], ")"]]]], "-", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["45", " ", RowBox[List["(", RowBox[List["2205", "-", RowBox[List["5580", " ", "z"]], "+", RowBox[List["5136", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2560", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4096", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["99225", "-", RowBox[List["118800", " ", "z"]], "+", RowBox[List["108000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["230400", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["8192", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "99225"]], "+", RowBox[List["118800", " ", "z"]], "-", RowBox[List["108000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["230400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["8192", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["45", " ", RowBox[List["(", RowBox[List["2205", "-", RowBox[List["5580", " ", "z"]], "+", RowBox[List["5136", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2560", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4096", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["15728640", " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|