|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.03.7986.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(23/4)}, {-(11/2), 17/4}, z] ==
(13 (-4 z^(1/4) (-3022563043324006875 - 4030084057765342500 Sqrt[z] -
1842324140692728000 z + 84522397852569600 z^2 -
216245615285145600 z^(5/2) + 19902786253701120 z^3 -
70451639121346560 z^(7/2) + 2216348880076800 z^4 -
8363723453890560 z^(9/2) + 139325111009280 z^5 -
537961162604544 z^(11/2) + 5714856640512 z^6 -
22302959861760 z^(13/2) + 170724950016 z^7 - 670014898176 z^(15/2) +
4294967296 z^8 - 17179869184 z^(17/2) + E^(4 Sqrt[z])
(-3022563043324006875 + 4030084057765342500 Sqrt[z] -
1842324140692728000 z + 84522397852569600 z^2 +
216245615285145600 z^(5/2) + 19902786253701120 z^3 +
70451639121346560 z^(7/2) + 2216348880076800 z^4 +
8363723453890560 z^(9/2) + 139325111009280 z^5 +
537961162604544 z^(11/2) + 5714856640512 z^6 +
22302959861760 z^(13/2) + 170724950016 z^7 + 670014898176 z^(15/2) +
4294967296 z^8 + 17179869184 z^(17/2))) + E^(2 Sqrt[z]) Sqrt[2 Pi]
(-3022563043324006875 + 1381743105519546000 z -
570526185504844800 z^2 + 788875713290649600 z^3 +
274391552448921600 z^4 + 33009510069043200 z^5 +
2133948125675520 z^6 + 88683558469632 z^7 + 2667174690816 z^8 +
68719476736 z^9) Erf[Sqrt[2] z^(1/4)] + E^(2 Sqrt[z]) Sqrt[2 Pi]
(-3022563043324006875 + 1381743105519546000 z -
570526185504844800 z^2 + 788875713290649600 z^3 +
274391552448921600 z^4 + 33009510069043200 z^5 +
2133948125675520 z^6 + 88683558469632 z^7 + 2667174690816 z^8 +
68719476736 z^9) Erfi[Sqrt[2] z^(1/4)]))/E^(2 Sqrt[z])/
(46083435030789488640 z^(13/4))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["23", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", FractionBox["17", "4"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["13", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3022563043324006875"]], "-", RowBox[List["4030084057765342500", " ", SqrtBox["z"]]], "-", RowBox[List["1842324140692728000", " ", "z"]], "+", RowBox[List["84522397852569600", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["216245615285145600", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["19902786253701120", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["70451639121346560", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["2216348880076800", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["8363723453890560", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["139325111009280", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["537961162604544", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["5714856640512", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["22302959861760", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["170724950016", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["670014898176", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["17179869184", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3022563043324006875"]], "+", RowBox[List["4030084057765342500", " ", SqrtBox["z"]]], "-", RowBox[List["1842324140692728000", " ", "z"]], "+", RowBox[List["84522397852569600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["216245615285145600", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["19902786253701120", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["70451639121346560", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["2216348880076800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["8363723453890560", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["139325111009280", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["537961162604544", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["5714856640512", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["22302959861760", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["170724950016", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["670014898176", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["17179869184", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3022563043324006875"]], "+", RowBox[List["1381743105519546000", " ", "z"]], "-", RowBox[List["570526185504844800", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["788875713290649600", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["274391552448921600", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["33009510069043200", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2133948125675520", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["88683558469632", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2667174690816", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3022563043324006875"]], "+", RowBox[List["1381743105519546000", " ", "z"]], "-", RowBox[List["570526185504844800", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["788875713290649600", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["274391552448921600", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["33009510069043200", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2133948125675520", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["88683558469632", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2667174690816", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["46083435030789488640", " ", SuperscriptBox["z", RowBox[List["13", "/", "4"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 17 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["23", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["17", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 13 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 17179869184 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4294967296 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 670014898176 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 170724950016 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 22302959861760 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5714856640512 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 537961162604544 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 139325111009280 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8363723453890560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2216348880076800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 70451639121346560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19902786253701120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 216245615285145600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 84522397852569600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1842324140692728000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 4030084057765342500 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 17179869184 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4294967296 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 670014898176 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 170724950016 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 22302959861760 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5714856640512 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 537961162604544 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 139325111009280 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8363723453890560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2216348880076800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 70451639121346560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19902786253701120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 216245615285145600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 84522397852569600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1842324140692728000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 4030084057765342500 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> - </mo> <mn> 3022563043324006875 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3022563043324006875 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 68719476736 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2667174690816 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 88683558469632 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2133948125675520 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 33009510069043200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 274391552448921600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 788875713290649600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 570526185504844800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1381743105519546000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3022563043324006875 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 68719476736 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2667174690816 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 88683558469632 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2133948125675520 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 33009510069043200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 274391552448921600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 788875713290649600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 570526185504844800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1381743105519546000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3022563043324006875 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 46083435030789488640 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </apply> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='rational'> 17 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 13 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -17179869184 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4294967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 670014898176 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 170724950016 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 22302959861760 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5714856640512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 537961162604544 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 139325111009280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8363723453890560 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2216348880076800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 70451639121346560 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 19902786253701120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 216245615285145600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 84522397852569600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1842324140692728000 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4030084057765342500 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 17179869184 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4294967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 670014898176 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 170724950016 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 22302959861760 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5714856640512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 537961162604544 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 139325111009280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8363723453890560 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2216348880076800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 70451639121346560 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 19902786253701120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 216245615285145600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 84522397852569600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1842324140692728000 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4030084057765342500 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -3022563043324006875 </cn> </apply> </apply> <cn type='integer'> -3022563043324006875 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 68719476736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2667174690816 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 88683558469632 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2133948125675520 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 33009510069043200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 274391552448921600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 788875713290649600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 570526185504844800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1381743105519546000 </cn> <ci> z </ci> </apply> <cn type='integer'> -3022563043324006875 </cn> </apply> <apply> <ci> Erf </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 68719476736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2667174690816 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 88683558469632 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2133948125675520 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 33009510069043200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 274391552448921600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 788875713290649600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 570526185504844800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1381743105519546000 </cn> <ci> z </ci> </apply> <cn type='integer'> -3022563043324006875 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 46083435030789488640 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["23", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", FractionBox["17", "4"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["13", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3022563043324006875"]], "-", RowBox[List["4030084057765342500", " ", SqrtBox["z"]]], "-", RowBox[List["1842324140692728000", " ", "z"]], "+", RowBox[List["84522397852569600", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["216245615285145600", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["19902786253701120", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["70451639121346560", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["2216348880076800", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["8363723453890560", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["139325111009280", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["537961162604544", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["5714856640512", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["22302959861760", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["170724950016", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["670014898176", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["17179869184", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3022563043324006875"]], "+", RowBox[List["4030084057765342500", " ", SqrtBox["z"]]], "-", RowBox[List["1842324140692728000", " ", "z"]], "+", RowBox[List["84522397852569600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["216245615285145600", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["19902786253701120", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["70451639121346560", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["2216348880076800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["8363723453890560", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["139325111009280", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["537961162604544", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["5714856640512", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["22302959861760", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["170724950016", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["670014898176", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["17179869184", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3022563043324006875"]], "+", RowBox[List["1381743105519546000", " ", "z"]], "-", RowBox[List["570526185504844800", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["788875713290649600", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["274391552448921600", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["33009510069043200", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2133948125675520", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["88683558469632", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2667174690816", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3022563043324006875"]], "+", RowBox[List["1381743105519546000", " ", "z"]], "-", RowBox[List["570526185504844800", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["788875713290649600", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["274391552448921600", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["33009510069043200", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2133948125675520", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["88683558469632", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2667174690816", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]]]], ")"]]]], RowBox[List["46083435030789488640", " ", SuperscriptBox["z", RowBox[List["13", "/", "4"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|