Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=-23/4, b1`>=-11/2 > For fixed z and a1=-23/4, b1`=9/2





http://functions.wolfram.com/07.22.03.8460.01









  


  










Input Form





HypergeometricPFQ[{-(23/4)}, {9/2, 11/4}, z] == ((2 z (491093022420000 + 11047985259436125 z + 123398950755366000 z^2 - 86461489717574400 z^3 + 13247310867148800 z^4 - 681864870297600 z^5 + 13654394142720 z^6 - 107122524160 z^7 + 268435456 z^8) BesselI[-(1/4), Sqrt[z]]^2 - Sqrt[z] (2946558134520000 + 26857965091332375 z + 85473358688718000 z^2 - 79184195126150400 z^3 + 12842876151705600 z^4 - 673507683532800 z^5 + 13587893452800 z^6 - 106954752000 z^7 + 268435456 z^8) BesselI[-(1/4), Sqrt[z]] BesselI[3/4, Sqrt[z]] - 2 (-1104959300445000 + 4714493015232000 z + 23429960404475625 z^2 + 105924768161612400 z^3 - 83392788662726400 z^4 + 13081986208051200 z^5 - 678492622356480 z^6 + 13627718369280 z^7 - 107055415296 z^8 + 268435456 z^9) BesselI[3/4, Sqrt[z]]^2) Gamma[3/4]^2)/(174031643111040000 Sqrt[2] z^(11/4))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["23", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", FractionBox["11", "4"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["491093022420000", "+", RowBox[List["11047985259436125", " ", "z"]], "+", RowBox[List["123398950755366000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["86461489717574400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["13247310867148800", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["681864870297600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["13654394142720", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["107122524160", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], "2"]]], "-", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List["2946558134520000", "+", RowBox[List["26857965091332375", " ", "z"]], "+", RowBox[List["85473358688718000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["79184195126150400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["12842876151705600", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["673507683532800", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["13587893452800", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["106954752000", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1104959300445000"]], "+", RowBox[List["4714493015232000", " ", "z"]], "+", RowBox[List["23429960404475625", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["105924768161612400", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["83392788662726400", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["13081986208051200", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["678492622356480", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["13627718369280", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["107055415296", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], ")"]], "/", RowBox[List["(", RowBox[List["174031643111040000", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;23&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;9&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;11&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 268435456 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 107122524160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13654394142720 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 681864870297600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13247310867148800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 86461489717574400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 123398950755366000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11047985259436125 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 491093022420000 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> I </mi> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 268435456 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 106954752000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13587893452800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 673507683532800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12842876151705600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 79184195126150400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 85473358688718000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26857965091332375 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2946558134520000 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 268435456 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 107055415296 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13627718369280 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 678492622356480 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13081986208051200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 83392788662726400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 105924768161612400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 23429960404475625 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4714493015232000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1104959300445000 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 174031643111040000 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 9 <sep /> 2 </cn> <cn type='rational'> 11 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 268435456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 107122524160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 13654394142720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 681864870297600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 13247310867148800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 86461489717574400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 123398950755366000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 11047985259436125 </cn> <ci> z </ci> </apply> <cn type='integer'> 491093022420000 </cn> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 268435456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 106954752000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 13587893452800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 673507683532800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12842876151705600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 79184195126150400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 85473358688718000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 26857965091332375 </cn> <ci> z </ci> </apply> <cn type='integer'> 2946558134520000 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 268435456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 107055415296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 13627718369280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 678492622356480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 13081986208051200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 83392788662726400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 105924768161612400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 23429960404475625 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4714493015232000 </cn> <ci> z </ci> </apply> <cn type='integer'> -1104959300445000 </cn> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 174031643111040000 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["23", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", FractionBox["11", "4"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["491093022420000", "+", RowBox[List["11047985259436125", " ", "z"]], "+", RowBox[List["123398950755366000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["86461489717574400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["13247310867148800", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["681864870297600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["13654394142720", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["107122524160", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], "2"]]], "-", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List["2946558134520000", "+", RowBox[List["26857965091332375", " ", "z"]], "+", RowBox[List["85473358688718000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["79184195126150400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["12842876151705600", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["673507683532800", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["13587893452800", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["106954752000", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1104959300445000"]], "+", RowBox[List["4714493015232000", " ", "z"]], "+", RowBox[List["23429960404475625", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["105924768161612400", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["83392788662726400", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["13081986208051200", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["678492622356480", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["13627718369280", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["107055415296", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], RowBox[List["174031643111040000", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02