Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=-23/4, b1`>=-11/2 > For fixed z and a1=-23/4, b1`=11/2





http://functions.wolfram.com/07.22.03.8506.01









  


  










Input Form





HypergeometricPFQ[{-(23/4)}, {11/2, 9/4}, z] == (-4 (576948445920000 + 1153896891840000 Sqrt[z] + 402948120960000 z - 732632947200000 z^(3/2) - 5861063577600 z^2 + 1375396252876800 z^(5/2) - 6376837172428800 z^3 + 4615289458250625 z^(7/2) - 28856367159196500 z^4 - 5422837959776160 z^(9/2) + 23985975146474880 z^5 + 896976055422720 z^(11/2) - 3717870145920000 z^6 - 46213222809600 z^(13/2) + 187501168361472 z^7 + 905932898304 z^(15/2) - 3644276342784 z^8 - 6905921536 z^(17/2) + 27674017792 z^9 + 16777216 z^(19/2) - 67108864 z^10 + E^(4 Sqrt[z]) (-576948445920000 + 1153896891840000 Sqrt[z] - 402948120960000 z - 732632947200000 z^(3/2) + 5861063577600 z^2 + 1375396252876800 z^(5/2) + 6376837172428800 z^3 + 4615289458250625 z^(7/2) + 28856367159196500 z^4 - 5422837959776160 z^(9/2) - 23985975146474880 z^5 + 896976055422720 z^(11/2) + 3717870145920000 z^6 - 46213222809600 z^(13/2) - 187501168361472 z^7 + 905932898304 z^(15/2) + 3644276342784 z^8 - 6905921536 z^(17/2) - 27674017792 z^9 + 16777216 z^(19/2) + 67108864 z^10)) + E^(2 Sqrt[z]) Sqrt[2 Pi] z^(13/4) (19619612216906625 + 129258621664326000 z - 98482759363296000 z^2 + 15006896664883200 z^3 - 752697011404800 z^4 + 14597760221184 z^5 - 110746402816 z^6 + 268435456 z^7) Erf[Sqrt[2] z^(1/4)] + E^(2 Sqrt[z]) Sqrt[2 Pi] z^(13/4) (19619612216906625 + 129258621664326000 z - 98482759363296000 z^2 + 15006896664883200 z^3 - 752697011404800 z^4 + 14597760221184 z^5 - 110746402816 z^6 + 268435456 z^7) Erfi[Sqrt[2] z^(1/4)])/E^(2 Sqrt[z])/ (529871137328332800 z^(9/2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["23", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["9", "4"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List["576948445920000", "+", RowBox[List["1153896891840000", " ", SqrtBox["z"]]], "+", RowBox[List["402948120960000", " ", "z"]], "-", RowBox[List["732632947200000", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["5861063577600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1375396252876800", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["6376837172428800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4615289458250625", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["28856367159196500", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["5422837959776160", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["23985975146474880", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["896976055422720", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["3717870145920000", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["46213222809600", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["187501168361472", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["905932898304", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["3644276342784", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["6905921536", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["27674017792", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "-", RowBox[List["67108864", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "576948445920000"]], "+", RowBox[List["1153896891840000", " ", SqrtBox["z"]]], "-", RowBox[List["402948120960000", " ", "z"]], "-", RowBox[List["732632947200000", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["5861063577600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1375396252876800", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["6376837172428800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4615289458250625", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["28856367159196500", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["5422837959776160", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["23985975146474880", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["896976055422720", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["3717870145920000", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["46213222809600", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["187501168361472", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["905932898304", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["3644276342784", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["6905921536", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["27674017792", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["67108864", " ", SuperscriptBox["z", "10"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["13", "/", "4"]]], " ", RowBox[List["(", RowBox[List["19619612216906625", "+", RowBox[List["129258621664326000", " ", "z"]], "-", RowBox[List["98482759363296000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["15006896664883200", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["752697011404800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["14597760221184", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["110746402816", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["13", "/", "4"]]], " ", RowBox[List["(", RowBox[List["19619612216906625", "+", RowBox[List["129258621664326000", " ", "z"]], "-", RowBox[List["98482759363296000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["15006896664883200", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["752697011404800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["14597760221184", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["110746402816", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["529871137328332800", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 9 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;23&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;11&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;9&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 268435456 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 110746402816 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14597760221184 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 752697011404800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15006896664883200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 98482759363296000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 129258621664326000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 19619612216906625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 268435456 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 110746402816 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14597760221184 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 752697011404800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15006896664883200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 98482759363296000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 129258621664326000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 19619612216906625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 67108864 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27674017792 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6905921536 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3644276342784 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 905932898304 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 187501168361472 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 46213222809600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3717870145920000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 896976055422720 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 23985975146474880 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5422837959776160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28856367159196500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4615289458250625 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6376837172428800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1375396252876800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5861063577600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 732632947200000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 402948120960000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 1153896891840000 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 67108864 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 27674017792 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6905921536 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3644276342784 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 905932898304 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 187501168361472 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 46213222809600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3717870145920000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 896976055422720 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 23985975146474880 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5422837959776160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 28856367159196500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4615289458250625 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6376837172428800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1375396252876800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5861063577600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 732632947200000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 402948120960000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 1153896891840000 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> - </mo> <mn> 576948445920000 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 576948445920000 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 529871137328332800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='rational'> 9 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 268435456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 110746402816 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14597760221184 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 752697011404800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 15006896664883200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 98482759363296000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 129258621664326000 </cn> <ci> z </ci> </apply> <cn type='integer'> 19619612216906625 </cn> </apply> <apply> <ci> Erf </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 268435456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 110746402816 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14597760221184 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 752697011404800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 15006896664883200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 98482759363296000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 129258621664326000 </cn> <ci> z </ci> </apply> <cn type='integer'> 19619612216906625 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -67108864 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 27674017792 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6905921536 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3644276342784 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 905932898304 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 187501168361472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 46213222809600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3717870145920000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 896976055422720 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 23985975146474880 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5422837959776160 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28856367159196500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4615289458250625 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6376837172428800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1375396252876800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5861063577600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 732632947200000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 402948120960000 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 1153896891840000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 67108864 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27674017792 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6905921536 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3644276342784 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 905932898304 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 187501168361472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 46213222809600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3717870145920000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 896976055422720 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 23985975146474880 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5422837959776160 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 28856367159196500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4615289458250625 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6376837172428800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1375396252876800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5861063577600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 732632947200000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 402948120960000 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 1153896891840000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -576948445920000 </cn> </apply> </apply> <cn type='integer'> 576948445920000 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 529871137328332800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["23", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["9", "4"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List["576948445920000", "+", RowBox[List["1153896891840000", " ", SqrtBox["z"]]], "+", RowBox[List["402948120960000", " ", "z"]], "-", RowBox[List["732632947200000", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["5861063577600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1375396252876800", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["6376837172428800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4615289458250625", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["28856367159196500", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["5422837959776160", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["23985975146474880", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["896976055422720", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["3717870145920000", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["46213222809600", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["187501168361472", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["905932898304", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["3644276342784", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["6905921536", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["27674017792", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "-", RowBox[List["67108864", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "576948445920000"]], "+", RowBox[List["1153896891840000", " ", SqrtBox["z"]]], "-", RowBox[List["402948120960000", " ", "z"]], "-", RowBox[List["732632947200000", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["5861063577600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1375396252876800", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["6376837172428800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4615289458250625", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["28856367159196500", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["5422837959776160", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["23985975146474880", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["896976055422720", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["3717870145920000", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["46213222809600", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["187501168361472", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["905932898304", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["3644276342784", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["6905921536", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["27674017792", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["67108864", " ", SuperscriptBox["z", "10"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["13", "/", "4"]]], " ", RowBox[List["(", RowBox[List["19619612216906625", "+", RowBox[List["129258621664326000", " ", "z"]], "-", RowBox[List["98482759363296000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["15006896664883200", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["752697011404800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["14597760221184", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["110746402816", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["13", "/", "4"]]], " ", RowBox[List["(", RowBox[List["19619612216906625", "+", RowBox[List["129258621664326000", " ", "z"]], "-", RowBox[List["98482759363296000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["15006896664883200", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["752697011404800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["14597760221184", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["110746402816", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]]]], ")"]]]], RowBox[List["529871137328332800", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02