|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.03.8519.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(23/4)}, {11/2, 21/4}, -z] ==
(Sqrt[Pi] z^(1/4) (6714321790930869740625 - 16527561331522140900000 z +
14691165628019680800000 z^2 - 9643431796853944320000 z^3 +
15883299430112378880000 z^4 + 4840624588224724992000 z^5 +
368809492436169523200 z^6 + 10570446715591065600 z^7 +
128126626855649280 z^8 + 648024665620480 z^9 + 1099511627776 z^10)
FresnelC[(2 z^(1/4))/Sqrt[Pi]] -
2 ((-Sqrt[z]) (-1874527441898790380625 + 1564730408177943930000 z -
917190662595596928000 z^2 + 776080693328726016000 z^3 +
283124042236772352000 z^4 + 22459491538226380800 z^5 +
653292740636835840 z^6 + 7970197654732800 z^7 + 40437117091840 z^8 +
68719476736 z^9) Cos[2 Sqrt[z]] +
4 (604974293629009920000 - 1334121898737197233125 z +
1092823522955055738000 z^2 - 707114783801365632000 z^3 +
943981547856257433600 z^4 + 298468908431563161600 z^5 +
22929904689846681600 z^6 + 659167873377239040 z^7 +
8000348325150720 z^8 + 40488656699392 z^9 + 68719476736 z^10)
Sin[2 Sqrt[z]]))/(12570365558714793984000 z^(9/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["23", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["21", "4"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List["6714321790930869740625", "-", RowBox[List["16527561331522140900000", " ", "z"]], "+", RowBox[List["14691165628019680800000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["9643431796853944320000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["15883299430112378880000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["4840624588224724992000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["368809492436169523200", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["10570446715591065600", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["128126626855649280", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["648024665620480", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1099511627776", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1874527441898790380625"]], "+", RowBox[List["1564730408177943930000", " ", "z"]], "-", RowBox[List["917190662595596928000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["776080693328726016000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["283124042236772352000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["22459491538226380800", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["653292740636835840", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["7970197654732800", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["40437117091840", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["604974293629009920000", "-", RowBox[List["1334121898737197233125", " ", "z"]], "+", RowBox[List["1092823522955055738000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["707114783801365632000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["943981547856257433600", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["298468908431563161600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["22929904689846681600", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["659167873377239040", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["8000348325150720", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["40488656699392", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["12570365558714793984000", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["23", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["21", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1099511627776 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 648024665620480 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 128126626855649280 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10570446715591065600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 368809492436169523200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4840624588224724992000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15883299430112378880000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9643431796853944320000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14691165628019680800000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 16527561331522140900000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 6714321790930869740625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 68719476736 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 40488656699392 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8000348325150720 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 659167873377239040 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 22929904689846681600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 298468908431563161600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 943981547856257433600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 707114783801365632000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1092823522955055738000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1334121898737197233125 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 604974293629009920000 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 68719476736 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 40437117091840 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7970197654732800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 653292740636835840 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 22459491538226380800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 283124042236772352000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 776080693328726016000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 917190662595596928000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1564730408177943930000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1874527441898790380625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 12570365558714793984000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='rational'> 21 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1099511627776 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 648024665620480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 128126626855649280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10570446715591065600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 368809492436169523200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4840624588224724992000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15883299430112378880000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9643431796853944320000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14691165628019680800000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16527561331522140900000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 6714321790930869740625 </cn> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 68719476736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 40488656699392 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8000348325150720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 659167873377239040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 22929904689846681600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 298468908431563161600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 943981547856257433600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 707114783801365632000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1092823522955055738000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1334121898737197233125 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 604974293629009920000 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 68719476736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 40437117091840 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7970197654732800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 653292740636835840 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 22459491538226380800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 283124042236772352000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 776080693328726016000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 917190662595596928000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1564730408177943930000 </cn> <ci> z </ci> </apply> <cn type='integer'> -1874527441898790380625 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 12570365558714793984000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["23", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["21", "4"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List["6714321790930869740625", "-", RowBox[List["16527561331522140900000", " ", "z"]], "+", RowBox[List["14691165628019680800000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["9643431796853944320000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["15883299430112378880000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["4840624588224724992000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["368809492436169523200", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["10570446715591065600", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["128126626855649280", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["648024665620480", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1099511627776", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1874527441898790380625"]], "+", RowBox[List["1564730408177943930000", " ", "z"]], "-", RowBox[List["917190662595596928000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["776080693328726016000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["283124042236772352000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["22459491538226380800", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["653292740636835840", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["7970197654732800", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["40437117091840", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["604974293629009920000", "-", RowBox[List["1334121898737197233125", " ", "z"]], "+", RowBox[List["1092823522955055738000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["707114783801365632000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["943981547856257433600", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["298468908431563161600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["22929904689846681600", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["659167873377239040", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["8000348325150720", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["40488656699392", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], RowBox[List["12570365558714793984000", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|