|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.03.8691.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(21/4)}, {-(5/2), 1/4}, -z] ==
-((1/(1190700 Sqrt[2] z^(1/4)))
((2 (-1190700 + 7620480 z + 1734453 z^2 - 1145088 z^3 + 16869888 z^4 +
2752512 z^5 + 65536 z^6) BesselJ[1/4, Sqrt[z]]^2 -
3 Sqrt[z] (-3175200 + 14321475 z - 12271392 z^2 + 14558208 z^3 +
2695168 z^4 + 65536 z^5) BesselJ[1/4, Sqrt[z]] BesselJ[5/4, Sqrt[z]] +
2 z (-4762800 + 12482505 z - 11285568 z^2 + 14870016 z^3 + 2703360 z^4 +
65536 z^5) BesselJ[5/4, Sqrt[z]]^2) Gamma[5/4]^2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["21", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", FractionBox["1", "4"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["1190700", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1190700"]], "+", RowBox[List["7620480", " ", "z"]], "+", RowBox[List["1734453", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1145088", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["16869888", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2752512", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]], "-", RowBox[List["3", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3175200"]], "+", RowBox[List["14321475", " ", "z"]], "-", RowBox[List["12271392", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["14558208", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2695168", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4762800"]], "+", RowBox[List["12482505", " ", "z"]], "-", RowBox[List["11285568", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["14870016", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2703360", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["5", "4"], "]"]], "2"]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["21", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1190700 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 65536 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2752512 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16869888 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1145088 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1734453 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7620480 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1190700 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msub> <mi> J </mi> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 65536 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2695168 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14558208 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12271392 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14321475 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3175200 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 65536 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2703360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14870016 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11285568 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12482505 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 4762800 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msub> <mi> J </mi> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 21 <sep /> 4 </cn> </apply> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1190700 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2752512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16869888 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1145088 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1734453 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7620480 </cn> <ci> z </ci> </apply> <cn type='integer'> -1190700 </cn> </apply> <apply> <power /> <apply> <ci> BesselJ </ci> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2695168 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 14558208 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12271392 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14321475 </cn> <ci> z </ci> </apply> <cn type='integer'> -3175200 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> BesselJ </ci> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2703360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 14870016 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11285568 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12482505 </cn> <ci> z </ci> </apply> <cn type='integer'> -4762800 </cn> </apply> <apply> <power /> <apply> <ci> BesselJ </ci> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["21", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", FractionBox["1", "4"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1190700"]], "+", RowBox[List["7620480", " ", "z"]], "+", RowBox[List["1734453", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1145088", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["16869888", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2752512", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]], "-", RowBox[List["3", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3175200"]], "+", RowBox[List["14321475", " ", "z"]], "-", RowBox[List["12271392", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["14558208", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2695168", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4762800"]], "+", RowBox[List["12482505", " ", "z"]], "-", RowBox[List["11285568", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["14870016", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2703360", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["65536", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["5", "4"], "]"]], "2"]]], RowBox[List["1190700", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|