|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.03.9092.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(21/4)}, {11/2, 19/4}, z] ==
(-4 (2086009760120832000 + 4172019520241664000 Sqrt[z] -
403901639132662125 z + 12176190638083426500 z^(3/2) -
1281124565403883200 z^2 + 10305522935170444800 z^(5/2) -
601747814220134400 z^3 + 7347451639249612800 z^(7/2) +
2518002919950336000 z^4 - 11059312996942479360 z^(9/2) -
378867251413647360 z^5 + 1563731265131642880 z^(11/2) +
17028805684101120 z^6 - 68972743407697920 z^(13/2) -
292483246325760 z^7 + 1175812527095808 z^(15/2) + 1974611214336 z^8 -
7911329759232 z^(17/2) - 4294967296 z^9 + 17179869184 z^(19/2) +
E^(4 Sqrt[z]) (-2086009760120832000 + 4172019520241664000 Sqrt[z] +
403901639132662125 z + 12176190638083426500 z^(3/2) +
1281124565403883200 z^2 + 10305522935170444800 z^(5/2) +
601747814220134400 z^3 + 7347451639249612800 z^(7/2) -
2518002919950336000 z^4 - 11059312996942479360 z^(9/2) +
378867251413647360 z^5 + 1563731265131642880 z^(11/2) -
17028805684101120 z^6 - 68972743407697920 z^(13/2) +
292483246325760 z^7 + 1175812527095808 z^(15/2) - 1974611214336 z^8 -
7911329759232 z^(17/2) + 4294967296 z^9 + 17179869184 z^(19/2))) -
E^(2 Sqrt[z]) Sqrt[2 Pi] z^(3/4) (27820029915006454125 +
52027068931960122000 z + 43243278073317504000 z^2 +
35875904771937484800 z^3 - 45316932343499980800 z^4 +
6304964499965214720 z^5 - 276761130313973760 z^6 +
4709157835898880 z^7 - 31658203938816 z^8 + 68719476736 z^9)
Erf[Sqrt[2] z^(1/4)] + E^(2 Sqrt[z]) Sqrt[2 Pi] z^(3/4)
(27820029915006454125 + 52027068931960122000 z +
43243278073317504000 z^2 + 35875904771937484800 z^3 -
45316932343499980800 z^4 + 6304964499965214720 z^5 -
276761130313973760 z^6 + 4709157835898880 z^7 - 31658203938816 z^8 +
68719476736 z^9) Erfi[Sqrt[2] z^(1/4)])/E^(2 Sqrt[z])/
(205859370604387368960 z^(9/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["21", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["19", "4"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List["2086009760120832000", "+", RowBox[List["4172019520241664000", " ", SqrtBox["z"]]], "-", RowBox[List["403901639132662125", " ", "z"]], "+", RowBox[List["12176190638083426500", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["1281124565403883200", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["10305522935170444800", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["601747814220134400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["7347451639249612800", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["2518002919950336000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["11059312996942479360", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["378867251413647360", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1563731265131642880", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["17028805684101120", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["68972743407697920", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["292483246325760", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1175812527095808", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["1974611214336", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["7911329759232", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["4294967296", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["17179869184", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2086009760120832000"]], "+", RowBox[List["4172019520241664000", " ", SqrtBox["z"]]], "+", RowBox[List["403901639132662125", " ", "z"]], "+", RowBox[List["12176190638083426500", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1281124565403883200", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["10305522935170444800", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["601747814220134400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["7347451639249612800", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["2518002919950336000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["11059312996942479360", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["378867251413647360", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1563731265131642880", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["17028805684101120", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["68972743407697920", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["292483246325760", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1175812527095808", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["1974611214336", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["7911329759232", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["17179869184", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List["27820029915006454125", "+", RowBox[List["52027068931960122000", " ", "z"]], "+", RowBox[List["43243278073317504000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["35875904771937484800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["45316932343499980800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6304964499965214720", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["276761130313973760", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4709157835898880", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["31658203938816", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List["27820029915006454125", "+", RowBox[List["52027068931960122000", " ", "z"]], "+", RowBox[List["43243278073317504000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["35875904771937484800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["45316932343499980800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6304964499965214720", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["276761130313973760", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4709157835898880", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["31658203938816", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["205859370604387368960", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 19 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["21", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["19", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 17179869184 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4294967296 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7911329759232 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1974611214336 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1175812527095808 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 292483246325760 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 68972743407697920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17028805684101120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1563731265131642880 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 378867251413647360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11059312996942479360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2518002919950336000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7347451639249612800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 601747814220134400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10305522935170444800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1281124565403883200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12176190638083426500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 403901639132662125 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 4172019520241664000 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 17179869184 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4294967296 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7911329759232 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1974611214336 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1175812527095808 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 292483246325760 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 68972743407697920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17028805684101120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1563731265131642880 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 378867251413647360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11059312996942479360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2518002919950336000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7347451639249612800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 601747814220134400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10305522935170444800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1281124565403883200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12176190638083426500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 403901639132662125 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 4172019520241664000 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> - </mo> <mn> 2086009760120832000 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2086009760120832000 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 68719476736 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 31658203938816 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4709157835898880 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 276761130313973760 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6304964499965214720 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 45316932343499980800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35875904771937484800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 43243278073317504000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 52027068931960122000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 27820029915006454125 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 68719476736 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 31658203938816 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4709157835898880 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 276761130313973760 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6304964499965214720 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 45316932343499980800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35875904771937484800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 43243278073317504000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 52027068931960122000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 27820029915006454125 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 205859370604387368960 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 21 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='rational'> 19 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 17179869184 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4294967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7911329759232 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1974611214336 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1175812527095808 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 292483246325760 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 68972743407697920 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17028805684101120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1563731265131642880 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 378867251413647360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11059312996942479360 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2518002919950336000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7347451639249612800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 601747814220134400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10305522935170444800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1281124565403883200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12176190638083426500 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 403901639132662125 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4172019520241664000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 17179869184 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4294967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7911329759232 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1974611214336 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1175812527095808 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 292483246325760 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 68972743407697920 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17028805684101120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1563731265131642880 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 378867251413647360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11059312996942479360 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2518002919950336000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 7347451639249612800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 601747814220134400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10305522935170444800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1281124565403883200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12176190638083426500 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 403901639132662125 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 4172019520241664000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -2086009760120832000 </cn> </apply> </apply> <cn type='integer'> 2086009760120832000 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 68719476736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 31658203938816 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4709157835898880 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 276761130313973760 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6304964499965214720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 45316932343499980800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 35875904771937484800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 43243278073317504000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 52027068931960122000 </cn> <ci> z </ci> </apply> <cn type='integer'> 27820029915006454125 </cn> </apply> <apply> <ci> Erf </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 68719476736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 31658203938816 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4709157835898880 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 276761130313973760 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6304964499965214720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 45316932343499980800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 35875904771937484800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 43243278073317504000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 52027068931960122000 </cn> <ci> z </ci> </apply> <cn type='integer'> 27820029915006454125 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 205859370604387368960 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["21", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["19", "4"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List["2086009760120832000", "+", RowBox[List["4172019520241664000", " ", SqrtBox["z"]]], "-", RowBox[List["403901639132662125", " ", "z"]], "+", RowBox[List["12176190638083426500", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["1281124565403883200", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["10305522935170444800", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["601747814220134400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["7347451639249612800", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["2518002919950336000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["11059312996942479360", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["378867251413647360", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1563731265131642880", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["17028805684101120", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["68972743407697920", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["292483246325760", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1175812527095808", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["1974611214336", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["7911329759232", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["4294967296", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["17179869184", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2086009760120832000"]], "+", RowBox[List["4172019520241664000", " ", SqrtBox["z"]]], "+", RowBox[List["403901639132662125", " ", "z"]], "+", RowBox[List["12176190638083426500", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1281124565403883200", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["10305522935170444800", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["601747814220134400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["7347451639249612800", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["2518002919950336000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["11059312996942479360", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["378867251413647360", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1563731265131642880", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["17028805684101120", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["68972743407697920", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["292483246325760", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1175812527095808", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["1974611214336", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["7911329759232", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["17179869184", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List["27820029915006454125", "+", RowBox[List["52027068931960122000", " ", "z"]], "+", RowBox[List["43243278073317504000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["35875904771937484800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["45316932343499980800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6304964499965214720", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["276761130313973760", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4709157835898880", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["31658203938816", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List["27820029915006454125", "+", RowBox[List["52027068931960122000", " ", "z"]], "+", RowBox[List["43243278073317504000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["35875904771937484800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["45316932343499980800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6304964499965214720", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["276761130313973760", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4709157835898880", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["31658203938816", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]]]], ")"]]]], RowBox[List["205859370604387368960", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|